期刊文献+

基于最优导向法则与距离约束的图像修复算法 被引量:3

Image inpainting method based on optimal guidance rule coupled with distance constraint
下载PDF
导出
摘要 为了解决当前图像修复算法利用置信度与数据项来完成图像修复时,忽略了优先修复块中已知信息量所占的比例,导致修复图像存在不连续以及块效应的不足,提出了一种基于最优导向法则耦合距离约束因子的图像修复算法。首先,将像素点的梯度信息引入到待修复块的优先权中,联合置信度与数据项,构造了优先权判定函数,从破损区域中选取优先修复块。以优先修复块中已知信息量所占的比例为依据,构造最优导向法则,对优先修复块中已知信息所占比例进行调整,以找出最佳的匹配块。然后,计算像素点的梯度信息,建立梯度直方图,确定待修复像素点的主方向,通过待修复块内已知像素点与待修复像素点的距离构造主方向上的距离约束因子,以对样本块大小进行动态调整。最后,在像素点之间棋盘距离的约束下,通过对像素点进行均方误差和度量,搜索最优匹配块,从而完成图像修复。实验结果与分析显示,与当前图像修复算法相比,所提算法具有更高的修复视觉质量。 In order to solve the defects as discontinuity and block effect of the repaired image in current image inpainting algorithm, which induced by neglecting the proportion of the known information in the priority repair block. a novel image inpainting method based on optimal guidance rule coupled with distance constraint is proposed in this paper. Firstly, the gradient information of pixels is introduced into the priority measurement of repaired blocks, and the priority decision function is constructed with confidence items and data items to select priority repair blocks. The proportion of the known information in the priority repair block is based on the optimal guidance law, and the proportion of the known information in the priority repair block is optimized. Then, by calculating the gradient information of pixels of the gradient histogram to determine the main direction of the inpainting pixel, the distance constraint factor in the main direction was constructed based on the distance between the known pixels and repaired pixels to dynamically adjust the sample size. Finally, under the constraint of the chessboard distance between pixels, the image restoration is completed by using the methods of the mean square error and measurement of the pixels to search the optimal matching block. The simulation experiment results and analysis show that compared with the current image restoration algorithm, the proposed algorithm has better visual effect.
出处 《电子测量与仪器学报》 CSCD 北大核心 2018年第10期119-125,共7页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61401150,61472119) 河南省高校科技创新人才支持计划(16HJSTIT040)资助项目
关键词 图像修复 梯度信息 优先权判定函数 最优导向法则 距离约束因子 均方误差和度量 image inpainting gradient information priority decision function optimal guidance rule distance constraint factor sum of squared differences measure
  • 相关文献

参考文献10

二级参考文献88

  • 1严大勤,孙鑫.一种基于区域匹配的图像拼接算法[J].仪器仪表学报,2006,27(z1):749-750. 被引量:13
  • 2张倩,刘苏醒,鞠芹,安平,张兆杨.采用图像修复的基于深度图像复制[J].光电子.激光,2009,20(10):1381-1384. 被引量:7
  • 3汪松,王俊平,万国挺,王乐.基于SIFT算法的图像匹配方法[J].吉林大学学报(工学版),2013,43(S1):279-282. 被引量:5
  • 4张红英,彭启琮.数字图像修复技术综述[J].中国图象图形学报,2007,12(1):1-10. 被引量:159
  • 5Bertalmio M, Sapiro G, Caselles V, et al. Image inpaint- ing[ A ]. Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques [ C ]. New Orleans : ACM Press, 2000.417 - 424. 被引量:1
  • 6Elad M, Starck J L, Querre P, et al. Simultaneous cartoon and texture image inpainting using morphological compo- nent analysis (MCA) [ J ]. Applied and Computational Har- monic Analysis ,2005,19( 3 ) :340 - 358. 被引量:1
  • 7Mairal J, et al. Non-local sparse models for image restora- tion[A]. Proceedings of 12th IEEE International Confer- ence on Computer Vision [ C ]. Kyoto: IEEE Press, 2009. 2272 - 2279. 被引量:1
  • 8Dong W S, Shi G M, Li X. Nonlocal image restoration with bilateral variance estimation: a low-rank approach [J]. IEEE Transactions on Image Processing, 2013,22 ( 2 ) : 700 -711. 被引量:1
  • 9Criminisi A, Perez P,Toyama K. Object removal by exem- plar-based inpainting [ A]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recog- nition [ C ] Madison Wisconsin: IEEE Press, 2003. 721 - 728. 被引量:1
  • 10Xu Z B, Sun J. Image inpainting by patch propagation u- sing patch sparsity[ J ]. IEEE Transactions on Image Pro- cessing,2010,19(5) : 1153 - 1165. 被引量:1

共引文献171

同被引文献28

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部