期刊文献+

Relationship Between Soil Boron Adsorption Kinetics and Rape Plant Boron Response 被引量:2

Relationship Between Soil Boron Adsorption Kinetics and Rape Plant Boron Response
下载PDF
导出
摘要 The boron adsorption kinetic experiment in soil by means of a flow displacement technique showed that the kinetic data could be described with some mathematic equations. The average values of the correlation coefficient for zero-order, first-order, parabolic diffusion, Elovich, power function and exponential equations were 0.957, 0.982, 0.981, 0.984, 0.981 and 0.902, respectively. The correlation between adsorbed boron or its other expression form and time were the highest for first-order, parabolic diffusion, Elovich, and power function equations, the second for the zeroorder equation, and the lowest for the exponential equation. The parabolic diffusion equation fitted well the experimental results, with the least standard error among the six kinetic equations, showing that the movement of boron from soil solution to soil colloid surface may be controlled by boron diffusion speed. The boron content of rape seedling obtained from soil cultivation was correlated with the rate constants of the kinetic equations. The constants of first-order, parabolic diffusion,and exponential equations were significantly correlated with the boron content of the crop of NPK treatment at a 95% probability level, with correlation coefficients being 0.686, 0.691 and 0.641, respectively. In the case of zero-order equation, it was significant at 99% probability level (r =0.736). These results showed that the absorption kinetic constants of soil boron were closely related with the rape plant response to boron. The boron adsorption kinetic experiment in soil by means of a flow displacement technique showed that the kinetic data could be described with some mathematic equations. The average values of the correlation coefficient for zero-order, first-order, parabolic diffusion, Elovich, power function and exponential equations were 0.957, 0.982, 0.981, 0.984, 0.981 and 0.902, respectively. The correlation between adsorbed boron or its other expression form and time were the highest for first-order, parabolic diffusion, Elovich, and power function equations, the second for the zeroorder equation, and the lowest for the exponential equation. The parabolic diffusion equation fitted well the experimental results, with the least standard error among the six kinetic equations, showing that the movement of boron from soil solution to soil colloid surface may be controlled by boron diffusion speed. The boron content of rape seedling obtained from soil cultivation was correlated with the rate constants of the kinetic equations. The constants of first-order, parabolic diffusion,and exponential equations were significantly correlated with the boron content of the crop of NPK treatment at a 95% probability level, with correlation coefficients being 0.686, 0.691 and 0.641, respectively. In the case of zero-order equation, it was significant at 99% probability level (r =0.736). These results showed that the absorption kinetic constants of soil boron were closely related with the rape plant response to boron.
出处 《Pedosphere》 SCIE CAS CSCD 1997年第3期269-274,共6页 土壤圈(英文版)
关键词 adsorption kinetics plant boron content rate constant soil boron 吸附动力学 土壤 迁移率 油菜种植
  • 相关文献

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部