期刊文献+

基于PCA与LS-SVM的故障预测应用研究 被引量:2

Research and Application of PCA and LS-SVM Based Fault Prediction
下载PDF
导出
摘要 基于数据驱动的故障预测通过对故障特征的历史数据进行建模,对新的数据进行分类,达到故障识别的目的。由于故障数据的样本空间小,而故障特征的维度非常高,故障预测的建模呈现高维度建模困难的特点。针对这些问题,本文利用主成分分析结合最小二乘支持向量机对故障数据进行建模,并构建故障预测的分类模型。首先利用主成分分析方法对高维的故障特征数据进行降维处理,保留故障信息贡献较大的特征(维度),再利用最小二乘支持向量机对降维的样本故障数据进行分类训练,构造故障的分类模型。在不同特征的故障数据集上的测试表明,基于主成分分析故障预测预处理结合最小二乘支持向量机可以更为准确地对故障进行预测,且模型的构建时间较少。 Fault prediction is a model analysis technology through fault features. To deal with fault sample insufficiency and high di-mension fault features, a fault prediction model based on principal component analysis(PCA) and least square support vector ma-chine(LS-SVM) is proposed. PCA is used to project high dimension data onto a lower dimension feature space so that LS-SVMcan be utilized to model the fault data space and efficiently classify the fault data. Experimental tests on most popular fault predic-tion benchmark datasets show that the proposed method can reduce fault prediction training time and is efficient and effective topredict faults.
作者 张祎
出处 《电脑知识与技术(过刊)》 2015年第4X期238-241,共4页 Computer Knowledge and Technology
关键词 支持向量机 故障预测 主成分分析 降维 support vector machine fault prediction p Principal component analysis dimension reduction
  • 相关文献

参考文献11

  • 1QIU H,LIAO H T,LEE J.Degradation assessment for machinery prognostics using hidden Markov models. Proceedings of the ASME International Design Engi-neering Technical Conferences and Computers and In-formation in Engineering Conference . 2005 被引量:2
  • 2Wilson Q. Wang,M.Farid Golnaraghi,Fathy Ismail.Prognosis of machine health condition using neuro-fuzzy systems[J]. Mechanical Systems and Signal Processing . 2003 (4) 被引量:1
  • 3Zhang S,Ganesan R.Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery. Transactions of ASME Journal of Engineering for Gas Turbines and Power . 1997 被引量:1
  • 4Bai Guangxing,Wang Pingfeng,Hu Chao.A self-cognizant dy-namic system approach for prognostics and health management. Journal of Power Sources . 2015 被引量:1
  • 5Vapnik VN.The Nature of Statistical Learning Theory. Journal of Women s Health . 1995 被引量:8
  • 6GOEBE K,BHASKAR S,ABHINAV S.A comparison of three data-driven techniques for prognostics. 62nd Meeting of the Society For Machinery Failure Preven-tion Technology(MFPT) . 2008 被引量:1
  • 7HESS A C,FRITH G P.Challenges,issues,and lessons learned chasing the"Big P".Real predictive prognostics.Part1. 2005IEEE Aerospace Conference . 2005 被引量:1
  • 8Ruqiang Yan,Robert X. Gao,Xuefeng Chen.Wavelets for fault diagnosis of rotary machines: A review with applications[J]. Signal Processing . 2013 被引量:1
  • 9MICHAEL G P.Prognostics and health management of electronics. Journal of Women s Health . 2008 被引量:1
  • 10Suyken J A K,Lukas L,van Dooren P,et al.Least squares support vector machine classifiers: a large scale algorithm. Proceedings of the European Conference on Circuit Theory and Design . 1999 被引量:1

二级参考文献73

共引文献22

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部