期刊文献+

基于PCA和支持向量机的径流预测应用研究 被引量:10

Application research on runoff forecast based on principal component analysis and support vector machine
下载PDF
导出
摘要 影响径流量的因素很多,并且这些因素与径流量之间存在着复杂的非线性关系。将主成分分析和支持向量机相结合,首先进行特征提取,降低数据维数,获取数据的主要信息;然后利用支持向量机建立径流预测模型,取得了非常好的效果。并与支持向量机回归模型进行了比较,结果表明该方法具有更好的预测精度,值得推广。 There are many factors witch affect runoff,and there is complex nonlinear relation between these factors and runoff.Combined the principal component analysis with the support vector machine,the paper firstly extracted the feature,then reduced the data dimension and acquired the key message of the data;then the runoff forecast model was established by using the support vector machine,very good effect has been obtained.Comparison is made between this model and SVM regression model,the result indicated that this method has better prediction precision which is deserved to be popularized.
出处 《水资源与水工程学报》 2010年第6期72-75,共4页 Journal of Water Resources and Water Engineering
基金 甘肃省教育厅科研项目(0902-04) 卫星甘肃省自然科学基金(096RJZA004)资助 甘肃省科技支撑计划(1011NKCA058)资助
关键词 主成分分析 支持向量机 径流预测 回归模型 principal component analysis(PCA) support vector machine runoff forecast regression model
  • 相关文献

参考文献16

二级参考文献150

共引文献428

同被引文献135

引证文献10

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部