期刊文献+

基于最小二乘支持向量机的开都河径流预测 被引量:1

Forecasting of Kaidu River Runoff Based on LS-SVM Model
下载PDF
导出
摘要 简述支持向量的回归分析,支持向量机自回归预测模型结构及预测方法,利用开都河大山口水文站52 a的径流资料,采用最小二乘支持向量机方法对径流进行模拟预测,并与BP神经网络方法进行对比分析,其计算结果相对略好。 The paper introduced the support vector regression analysis,expounded on support vector machine auto-regression model structure and prediction methods.The runoff data of 52 years were taken for runoff prediction by using least square and Support Vector Machine method(LS-SVM).A contrast analysis was made with the BP neural network method,which showed that the computed result was relatively better than the BP neural network method.
作者 王暄 屈卫军
出处 《地下水》 2012年第5期90-91,共2页 Ground water
关键词 支持向量机 径流预测 BP神经网络 开都河 SVM,runoff forecasting,BP neural network and Kaidu River
  • 相关文献

参考文献6

二级参考文献39

  • 1刘隽,周涛,周佩玲.GA优化支持向量机用于混沌时间序列预测[J].中国科学技术大学学报,2005,35(2):258-263. 被引量:21
  • 2[1]Vapnik V and Lerner A. A pattem recognition using generalized portrait method [J]. Automation and Remote Control, 1963,24:. 被引量:1
  • 3[3]Corinna Cortes, Vladimir Vapnik. Support-Vector Networks [J]. Machine Learning, 1995,20(3) :273-297. 被引量:1
  • 4[4]Vapnik V. Statistical leoing theory[M]. New York:John Wiley & Sons, 1998 被引量:1
  • 5[5]Scholkopf B, Smola A J. Learning with kernels [M].Cambridge,MA: MIT Press, 2002. 被引量:1
  • 6[6]Scholkopf B, Plat J C, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution [J]. Neural Computation, 2001,13(7): 1443-1471. 被引量:1
  • 7[7]Joachims T. Transductive inference for text classification using support vectoor machine[A]. In prooceedings of the Sixteenih International Conference on Machine Learning [C]. Morgan Kaufmann, 1999:148-156. 被引量:1
  • 8[10]Yiqiang Zhan, Dinggang Shen. Design efficient support vector machine for fast classification [J]. Pattern Recognition, 2005,38:157-161. 被引量:1
  • 9[11]Zhang X. Using class-center vectors to build support vector machines[A]. InPrroceedingss of NNSP'99[C], 1999. 被引量:1
  • 10[12]Mao K Z. Feature subset selection for support vector machines through discriminative function pruning analysis [J]. Ieee Transaction on Systems, Man, and Ctbernetics Part B: Cybernetics, 2004,34(1):60-67. 被引量:1

共引文献125

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部