期刊文献+

低碳中锰Q690F高强韧中厚板生产技术 被引量:7

Production Technology of Low-C Medium-Mn Q690F High Strength and Toughness Mid-Thick Steel Plate
下载PDF
导出
摘要 对低碳中锰Q690F高强韧中厚板进行了控扎控冷和热处理工艺试验,观察了显微组织,测定了拉伸和冲击性能,并阐述了其强韧化机制.结果表明:中锰钢的显微组织为亚微米尺度的回火马氏体+逆转变奥氏体的复合层状组织.中锰中厚板1/4厚度位置的屈服强度、抗拉强度、延伸率、-60℃冲击功分别为725 MPa,840 MPa,27. 7%,130 J.逆转变奥氏体发生相变诱导塑性(TRIP)效应产生的应变硬化是中锰钢主要的强化机制; TRIP效应吸收大量的应变能,推迟颈缩,增加均匀延伸率,是中锰钢主要的增塑机制; TRIP效应有效地提高了裂纹形成功和裂纹扩展功,是中锰钢主要的韧化机制. The thermomechanical control process( TMCP) and heat treatment test were conducted on low-C medium-M n Q690 F high strength and toughness mid-thick steel plate. The microstructure of the tested steel was analyzed and the tensile and impact properties were measured. The strengthening and toughening mechanisms were discussed. The results showed that the microstructure of the tested steel is a layered structure composed by sub-micrometer tempered martensite and reverse transformation austenite. The yield strength,tensile strength,elongation,and-60 ℃ impact energy of the tested plate at 1/4 thickness are 725 M Pa,840 M Pa,27. 7%,130 J,respectively. The strain hardening caused by transformation induced plasticity( TRIP) from the reversed austenite is the main strengthening mechanism. The TRIP effect which absorbs a large amount of strain energy,delays the necking and increases the uniform elongation is considered as the main mechanism for plasticizing. Furthermore,the TRIP effect can increase the energy of the crack initiation and propagation effectively,it is also regraded as the main toughening mechanism.
作者 齐祥羽 朱晓雷 胡军 杜林秀 QI Xiang-yu;ZHU Xiao-lei;HU Jun;DU Lin-xiu(State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China;State Key Laboratory of Metal Materials for Marine Equipment and Application,Iron&Steel Research Institutes of Ansteel Group Corporation,Anshan 114009,China.)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第4期483-487,共5页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2015AA03A501)
关键词 中锰钢 Q690F TRIP效应 强化机制 增塑机制 韧化机制 medium-Mn steel Q690F TRIP effect strengthening mechanism plasticizing mechanism toughening mechanism
  • 相关文献

参考文献1

二级参考文献10

  • 1Lee S ,Lee S J ,Santhosh Kumar S ,et al. Localized deformationin multiphase, ultra-fine-grained 6 Pct Mn transformation- induced plasticity steel [J]. Metallurgical and Materials Transactions A ,2011,42:3638 - 3651. 被引量:1
  • 2Gibbs P J,De Moor E,Merwine M J,et al. Austenite stability effects on tensile behavior of manganese enriched anstenite transformation-induced plasticity steel[J]. Metallurgical and Materials Transactions A ,2011,42:3691 - 3702. 被引量:1
  • 3De Moor E, Matlock D K, Speer J G, et al. Austenite stabilization through manganese enrichment [J].Scripta Materialia, 2010,64 : 85 - 88. 被引量:1
  • 4Miller R L. Ultrafine grained r properties of alloy steels [ J ] 1972,3:905 - 912. 被引量:1
  • 5Merwin M J. Low-carbon manganese TRIP steels [J]. Materials Science Forum, 2007, 539/540/541/542/543 : 4327 -4332. 被引量:1
  • 6Merwin M J. Microstructure and properties of cold rolled and annealed low-carbon manganese TRIP steels [ J ]. Iron and Steel Technology,2008,10:66 - 84. 被引量:1
  • 7Cai Z H,Ding H,Xue X,et al. Microstructural evolution and mechanical properties of hot-rolled 11% manganese TRIP steel [EB/OL ]. ( 2012 - 09 - 30 ). http ://dx. doi. org/10. 1016/j. msea. 2012.09. 083. 被引量:1
  • 8Speer J G,Streicher A M,Matlock D K, et al. Quenching and partitioning :a fundamentally new process to create high strength trip sheet microstructures [ C ]//Symposium on Austenite Formation and Decomposition. Chicago,2003:505 - 522. 被引量:1
  • 9董瀚,王毛球,翁宇庆.高性能钢的M^3组织调控理论与技术[J].钢铁,2010,45(7):1-7. 被引量:63
  • 10李振,赵爱民,唐荻,米振莉,焦殿辉.低碳中锰热轧TRIP钢退火工艺及组织演变[J].北京科技大学学报,2012,34(2):132-136. 被引量:22

共引文献7

同被引文献54

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部