期刊文献+

改进遗传算法在非线性变参数估计中的应用 被引量:3

Improved Genetic Algorithms for Varying Parameter Estimation in Nonlinear System
下载PDF
导出
摘要 针对解决非线性系统模型变参数估计问题要求运算速度快、效率高的情况 ,提出了实数编码遗传算法的改进算法 ,即分阶段设置收敛判断条件及择优操作等操作步骤。分阶段设置收敛判断条件是指在交叉操作完成之后增加了判断是否收敛的操作步骤 ;择优操作是指用交叉操作后形成的解群中的的适应值最大的优秀个体替代适应值最小的最差个体 ,使参加变异的优秀个体数目增加 ,使得算法在优秀个体局部邻域内的搜索机会增加。通过实例对改进算法与原算法的运算性能进行了比较 ,收敛速度平均提高了 2~ 3倍。实验结果表明 ,改进算法对提高遗传算法的运算速度是可行和有效的。 Aiming at the request of rapidly calculating velocity by solving problems of varying parameter estimation in nonlinear system, a real-coded genetic algorithms is proposed, that is, adding two operations of phase-divided-setting convergence judging condition and selecting the best individual. One of improved operations means that convergence judging conditions are respectively set after the crossing and the mutation operations are finished. Another improved operation means that the individual with maximum adaptive value will replace another individual, which has mininum adaptive value before mutating, so excellent individual number involving in the mutation and their local searching chance can be increased. The properties of improved algorithms and unimproved algorithms are compared with an actual example, the velocities of improved method can increase 2~3 times quickly as unimproved one. Experimental results show that improved genetic algorithms are effective and practicable to enhance the calculating velocity.
出处 《数据采集与处理》 CSCD 2002年第3期271-275,共5页 Journal of Data Acquisition and Processing
关键词 改进遗传算法 非线性变参数估计 非线性系统 实数编码 石油钻井 计算机 genetic algorithms nonlinear system parameter estimation real-coded
  • 相关文献

参考文献3

二级参考文献6

共引文献113

同被引文献19

  • 1姜斌,任双桥,黎湘,郭桂蓉.一种新的高分辨雷达杂波模型参数估计方法[J].现代雷达,2007,29(5):14-18. 被引量:5
  • 2Anastassopoulos V, Lampmpoulos G A, Drosopoulos A, Rey M. High resolution radar clutter statistics[ J]. IEEE Trans. AES, 1999,35( 1 ) :43 -60. 被引量:1
  • 3Anastassopoulos V, Lampropoulos G A. A generalized compound model for radar clutter[ C ]// Proceedings of the IEEE National Radar Conference. USA : IEEE Press, 1994. 被引量:1
  • 4Robert D, Iskander. Zoubir A m. Estimation of the Parameters of the K-distribution using higher order and fractional moments [ J ] . IEEE Trans on AES , 1999,35 (4) : 1453 - 1457. 被引量:1
  • 5Joughin I R, Percival D B, Winebrenner D P. Maximum likelihood estimation of K-distribution parameters for SAR data[ J]. IEE Proc-Radar, Sonar, Navigation, 1994, 141 (1) : 45 -52. 被引量:1
  • 6Wachowiak M P, Renata Smolikova , Zurada J M. Estimation of K distribution parameters using neural networks [ J ]. IEEE Trans on AES , 1991,27 (2) :238 - 246. 被引量:1
  • 7De Luca CJ, LeFever RS, McCue MP, et al. Behavior of human motor units in different muscles during linear varyingcontractions [ J ]. J. Physiol. 1982,329 : 13 - 128. 被引量:1
  • 8Stalberg E, Falck B, Sonoo M, et al. MultiMUP EMG analysis-A two years experience in daily clinical work [ J ]. EEG Clin.Neurophysiologic. 1995,97 : 145 - 154. 被引量:1
  • 9Zennaro D, Wellig P, Koch VM, et al. A software package for the decomposition of long-term multichammel EMG signals using wavelet coefficients Biomedical Engineering [ J ]. IEEE Transactions on,2003,50(1) : 58 - 69. 被引量:1
  • 10Stashuk D, EMG signal decomposition : how can it be accomplished and used? [J]. J. Electromyogr. Kinesiol 2001,11 : 151 - 173. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部