期刊文献+

基于遗传算法的sEMG至SFAP的分解算法 被引量:1

Decomposition Algorithm of sEMG into SFAP Based on GA
下载PDF
导出
摘要 本研究提出了一种表面肌电信号(SurfaceElectromyogram ,sEMG)至单纤维动作电位(SingleFiberActionPotential,SFAP)新的分解算法。由于sEMG分解的复杂性,本研究将sEMG分解问题转化为SFAP三基函数参数的优化问题和同一SFAP参数的聚类问题。在算法中,运用改进的遗传算法(GeneticAlgorithm ,GA)进行参数的优化,运用无监督学习的Kohonen神经网络进行参数的聚类。遗传算法的运用加强了算法的搜索能力,提高了分解的正确率,加快了算法的收敛速度。本分解算法的运用使得医疗诊断和假肢控制等领域可以通过非侵入式测量得到SFAP随时间的变化规律。 A new method was proposed in this paper of decomposing surface electromyogram (EMG) signals into their constituent single fiber action potentials (SFAPs). Because of the complexity of decomposition, the problem of sEMG decomposition was translated into three-base-function parameter optimizing and parameter clustering of the same SFAP. In the algorithm, improved genetic algorithm (GA) was used to optimize the parameter, and unsupervised learning Kohonen neural network was used to cluster the parameter. The using of GA enhanced the searching ability of algorithm, improved the decomposition correctness, and increased the decomposition convergent speed. The significance of such solution is that the variation of SFAP can be obtained by a non-invasive manner for physical diagnose and artificial limb control.
出处 《中国生物医学工程学报》 EI CAS CSCD 北大核心 2005年第3期343-349,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目 (5 0 1770 2 3 )
关键词 SEMG 遗传算法 分解 SFAP 聚类 Artificial limbs Biomedical engineering Genetic algorithms Neural networks Optimization
  • 相关文献

参考文献9

  • 1De Luca CJ, LeFever RS, McCue MP, et al. Behavior of human motor units in different muscles during linear varyingcontractions [ J ]. J. Physiol. 1982,329 : 13 - 128. 被引量:1
  • 2Stalberg E, Falck B, Sonoo M, et al. MultiMUP EMG analysis-A two years experience in daily clinical work [ J ]. EEG Clin.Neurophysiologic. 1995,97 : 145 - 154. 被引量:1
  • 3Zennaro D, Wellig P, Koch VM, et al. A software package for the decomposition of long-term multichammel EMG signals using wavelet coefficients Biomedical Engineering [ J ]. IEEE Transactions on,2003,50(1) : 58 - 69. 被引量:1
  • 4Stashuk D, EMG signal decomposition : how can it be accomplished and used? [J]. J. Electromyogr. Kinesiol 2001,11 : 151 - 173. 被引量:1
  • 5Huang Q, Graupe D, Huang YF, et al. Identification of firing patterns of neuronal signals [ J ]. Decision and Control, Proceedings of the 28 th IEEE Conference on, 1989,1 : 226 - 271. 被引量:1
  • 6Graupe D, Liu R, Circuits et al. A neural network approach to decomposing surface MEG signals [ M ]. Proceedings of the 32nd Midwest Symposium on, 1990,2 : 740 - 743. 被引量:1
  • 7Clark ,J. and Plonsey R., A Mathematical Evaluation of the Core Conductor Model[ J ]. Biophisical Journal, 1996,6 : 95 - 112. 被引量:1
  • 8王小平,曹立明著..遗传算法 理论、应用与软件实现[M].西安:西安交通大学出版社,2002:344.
  • 9高铁红,李冲宵,韩彦芳,陶媚.改进遗传算法在非线性变参数估计中的应用[J].数据采集与处理,2002,17(3):271-275. 被引量:3

二级参考文献2

共引文献2

同被引文献18

  • 1梁政,杨基海,瞿洋,陈香,谭春祥,冯焕清.基于非广度熵的运动单位动作电位(MUAP)发放检测[J].航天医学与医学工程,2004,17(3):219-223. 被引量:3
  • 2李强,杨基海,陈香,张旭.基于SEONS算法的表面肌电信号分解方法研究[J].航天医学与医学工程,2007,20(2):120-125. 被引量:7
  • 3Kouchaki S, Boostani R, Parsaei H. A new feature selection method for classification of EMG signals [ C ]. IEEE Proceed- ings of the Artificial Intelligence and Signal Processing (AISP), 2012, 585-590. 被引量:1
  • 4Parsaei H, Stashuk D. EMG Signal Decomposition using motor unit potential train validity [ J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 21 (2): 265- 274. 被引量:1
  • 5Farkas C, Hamilton-Wright A, Parsaei H, et al. A review of clinical quantitative electromyography [ J ]. Critical Reviews in Biomedical Engineering, 2010, 38 (5) : 467-485. 被引量:1
  • 6南登,黄晓琳.实用康复医学[M].人民卫生出版社,2009. 被引量:1
  • 7Holobar A, Zazula D. Correlation-based decomposition of sur- face electromyograms at low contraction forces [ J ]. Medical and Biological Engineering and Computing, 2004, 42 ( 4 ) : 487 -395. 被引量:1
  • 8De Luca C J, Adam A, Wotiz R, et al. Decomposition of surface EMG signals [ J ]. Journal of neurophysiology, 2006, 96(3) : 1646-1657. 被引量:1
  • 9Glaser V, Ho|obar A, Zazula D. Decomposition of synthetic surface electromyograms using sequential convolution kernel compensation [ J]. WSEAS Trans Biol Biomed, 2008, 5 (7) : 143-152. 被引量:1
  • 10Ge D, Le Carpentier E,Farina D. Unsupervised Bayesian de-composition of muhiunit EMG recordings using Tabu search [ J]. Biomedical Engineering, IEEE Transactions on, 2010, 57(3) : 561-571. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部