期刊文献+

改进型微粒群算法语言模型的研究

Research of Particle Horde Algorithm Language Model
下载PDF
导出
摘要 语言模型具有很好的可理解性特征,但在多数情况下,其精确性是难满足要求的。利用改进型微粒群算法优化输入变量的语言值及对应的正交模糊集参数,再应用Wang方法以形成语言模型,在保持可理解性的情况下,获得较精确的语言模型。改进型微粒群算法采用惯性权重自适应动态调整策略,结果显示该改进算法在语言模型过程中更容易获得全局最优解,学习效率和优化性能明显提高。 Linguistic model behaves an interpretable characteristic, but in many case ,it is not accurate to a sufficient degree. The author makes sure of the modified particles warm algorithm (MPSO) to be used to optimize each orthodoxy membership function of linguistic terms form each variable form of linguistic model by Wang way. The accuracy of the model obtained is improved while maintaining their descriptive power. MPSO adopts a strategy of dynamically self-adjusting inertia parameter. The results show that the modified particle swarm algorithm has great efficiency and better performance than PSO in learning linguistic model.
作者 金翔
出处 《软件导刊》 2007年第7期17-19,共3页 Software Guide
关键词 语言模型 改进型微粒群算法 WANG方法 linguistic model linguistic term MPSO
  • 相关文献

参考文献4

  • 1Casillas J,CordónO,Herrera F.Learning fuzzy rules using antcolony optimization algorithms[].TechnicalReport#DEC-SAI---Department of Computer and Artificial Intelli-genceUniversity of GranadaGranadaSpa-in.2001 被引量:1
  • 2Herrera F,Herrera-Viedma E.Linguistic deci-sion analysis:steps for solving decision prob-lems under linguistic information[].Fuzzy Sets and Systems.2000 被引量:1
  • 3Wang L X,Mendel J.Generating fuzzy rules by learning from examples[].IEEE Transac-tions on SystemsMan and Cybernetics.1992 被引量:1
  • 4Pen~a-Reyes C A.Coevolutionary Fuzzy Mod-eling[]..2002 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部