期刊文献+

应用改进型微粒群算法优化语言模型 被引量:1

Optimizing Linguistic Model by MPSO
下载PDF
导出
摘要 语言模型具有很好的可理解性特征,但在多数情况下,其精确性是难满足要求的.本文利用改进型微粒群算法(MPSO)优化输入变量的语言值及对应的正交模糊集参数,再应用Wang方法以形成语言模型,在保持可理解性情况下,获得较精确的语言模型.改进型微粒群算法采用惯性权重自适应动态调整策略,结果显示该改进算法在语言模型过程中更容易获得全局最优解,学习效率和优化性能明显提高. Linguistic model behaves an Interpretable characteristic , but in many case,it is not accurate to a sufficient degree. The paper makes use of the modified particle swarm algorithm(MPSO) to be used to optimize each orthodoxy membership function of linguistic terms form each variable, form linguistic model by Wang way. The accuracy of the model obtained is improved while maintaining their descriptive power. MPSO adopts a strategy of dynamically self- adiusting inertia parameter, results show that the modified particle swarm algorithm has great efficiency and better performance than PSO in learning linguistie model.
出处 《小型微型计算机系统》 CSCD 北大核心 2006年第12期2306-2309,共4页 Journal of Chinese Computer Systems
基金 湖南省自然科学基金项目(04JJY6036)资助.
关键词 语言模型 语言值 改进型微粒群算法 linguistic model linguistic term MPSO
  • 相关文献

参考文献8

  • 1Herrera F,Herrera-Viedma E.Linguistic decision analysis:steps for solving decision problems under linguistic information[J].Fuzzy Sets and Systems,2000,115(1):67-82. 被引量:1
  • 2Guillaume S.Designing fuzzy inference systems from data:An interpretability oriented review[J].IEEE Transactions on Fuzzy Systems,2001,9(3):426-443. 被引量:1
  • 3Pena-Reyes C A.Coevolutionary fuzzy modeling[D].Ben-Gurion University,2002. 被引量:1
  • 4Wang L X,Mendel J.Generating fuzzy rules by learning from examples[J].IEEE Transactions on Systems,Man and Cybernetics,1992(22):1414-1427. 被引量:1
  • 5Cordon O.Herrera F.A proposal for improving the accuracy of linguistic modeling[J].IEEE Transactions on Fuzzy Systems,2000,8(4):335-344. 被引量:1
  • 6Casillas J,Cordon O,Herrera F.Learning fuzzy rules using ant colony optimization algorithms[R].Technical Report #DECSAI-01-0103,Department of Computer and Artificial Intelligence,University of Granada,Granada,Spain,2001.3. 被引量:1
  • 7Kennedy J,Eberhart R.Particle swarm optimization[C].Proc IEEE Int Conf on Neural Networks.Perth,1995,1942-1948. 被引量:1
  • 8Eberhart R C,Shi Y.Particle swarm optimization:Developments,applications and resources[C].Proc.2001 Congress on Evolutionary Computation.Seoul,2001:81-86. 被引量:1

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部