期刊文献+

分数阶系统的状态反馈控制

State Feedback Control for Fractional Order Systems
下载PDF
导出
摘要 讨论了矩阵A不满足argλA()()>απ2的带Riemann-Liouville导数的分数阶系统的状态反馈控制。分别针对阶数α(0<α<1)和α(1≤α<2)2种情况,利用状态反抗控制器的设置以及线性矩阵不等式方法得到了系统稳定的充分条件。 This paper studies state feedback control for fractional order systems with Riemann-Liouville derivative,in which matrix A is not satisfying the condition|arg(λ(A)|>απ/2.Based on the state feedback controllers' designer,and Linear Matrix inequality(LMI)approach,the sufficient conditions for the systems with fraction order 0<α <1and 1<α <2are obtained respectively.
出处 《长江大学学报(自科版)(上旬)》 CAS 2014年第12期3-6,共4页 JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
基金 国家级特色专业建设项目(TS11496) 信息与计算科学专业综合改革试点(2013ZYSD05) 阜阳师范学院自然科学研究重点项目(2014FSKJ03ZD) 阜阳师范学院自然科学研究一般项目(2013FSKJ10)
关键词 分数阶 状态反馈 稳定 线性矩阵不等式 fractional feedback control stability linear matrix inequality
  • 相关文献

参考文献6

二级参考文献28

  • 1柴琳,费树岷,辛云冰.一类带未知输入时滞的多时滞非线性系统的对时滞参数的自适应H∞控制[J].自动化学报,2006,32(2):237-245. 被引量:8
  • 2柴琳,费树岷.一类输入时滞的线性时滞系统的自适应H~∞控制[J].系统工程理论与实践,2006,26(3):61-67. 被引量:5
  • 3Fridman E. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems and Control Letters, 2001, 43: 309-319. 被引量:1
  • 4Petersen I R and Hollot Christopher V. A riccati equation to the stabilization of uncertain linear systems. Automatica, 1986, 22(4): 397-411. 被引量:1
  • 5Deng W H, Li C P, Ltl J H. Stability analysis of linear fractional differential system with multiple time delays [ J ]. Nonlinear Dynamics,2007,48:409-416. 被引量:1
  • 6Qian D L,Li C P,Agarwal R P,et al. Stability analysis of fractional differential system with Riemann-Liouville derivative [ J ]. Mathematical and Computer Modelling, 2010,52 : 862-874. 被引量:1
  • 7Ahn H S, Chen Y Q. Necessary and sufficient stability condition of fractional-order interval linear systems [ J ]. Automatica, 2008,44 : 2985-2988. 被引量:1
  • 8Li Y, Chen, Igor P Y Q. Stability of fractional-order non- linear dynamic systems: Lyapunov direct method and generalized Mittag-Leitler stability [ J ]. Computers and Mathematics with Applications, 2010,59:1810-1821. 被引量:1
  • 9Xing S Y, Lu J G. Robust stability and stabilization of fractional-order linear systems with nonlinear uncertain parameters : An LMI approach [ J ]. Chaos, Solitons and Fractals ,2009,42 : 1163-1169. 被引量:1
  • 10Franklin P. Functions of Complex Variables [ M ]. New Jersey : Prentice-Hall, 1958. 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部