摘要
本文运用Avery-Peterson不动点定理研究以下分数阶边值问题Dα0+Dα0+u=f(t,u,u′,-Dα0+u,-Dα+10+u),t∈[0,1],u(0)=u′(0)=u′(1)=Dα0+u(0)=Dα+10+u(0)=Dα+10+u(1)={0至少三个正解的存在性,其中α∈(2,3]是一实数,Dα0+是α阶Riemann-Liouville分数阶导数.文章最后提供一个具体的例子来说明所得到的结论.
In this work, by virtue of Avery-Peterson fixed point theorem, we are mainly concerned with the existence result of at least triple positive solutions for the fractional boundary value problem {D0^α+D0^α+u=f(t,u,u',-D0^α+u,-D0+^α+1u),t∈[0,1],u(0)=u'(0)=u'(1)=D0+^αu(0)=D0+^α+1u(0)=D0+^α+1u(1)=0 Here α∈ (2,3] is a real number, D0+^α is the standard Riemann-Liouville fractional derivative of order a. Finally,we offer an example to illustrate Our main result.
出处
《应用数学》
CSCD
北大核心
2014年第1期118-124,共7页
Mathematica Applicata
基金
Supported by the NNSF-China(11202084)