期刊文献+

分数阶微分方程边值问题正解的存在性 被引量:1

Existence and Uniqueness of Positive Solutions for a Fractional Boundary Value Problem
下载PDF
导出
摘要 本文利用上下解方法与不动点定理研究分数阶边值问题Dα0+u(t)+f(t,u)=0,0<t<1u(j)(0)=0,u(1)=0,0≤j≤n-{2正解的存在唯一性,这里n-1<α<n(n≥3),Dα0+是Riemann-Liouville分数阶导数,f:[0,1]×[0,+∞)→(0,+∞)是连续函数。 The existence and uniqueness of positive solutions was explored for boundary value problem of the nonlinear fractional differential equation.{Dα0 +u( t) + f( t,u) = 0,0 t 1u(j)(0) = 0,u(1) = 0,0 ≤ j ≤ n-2Here n- 1 α n( n ≥ 3),Dα0 +is a real number,Dα0 +is the Riemann-Liouville's fractional derivative,and f:[0,1] × [0,+ ∞) →(0,+ ∞) is continuous. By means of lower and upper solution method and fixed point theorems,some results on the positive solutions were obtained for the above problem.
出处 《贵州大学学报(自然科学版)》 2015年第3期4-6,共3页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金项目资助(10791197) 山东省高等学校科技计划项目资助(J09LA55) 齐鲁师范学院青年基金项目资助(2013L1301)
关键词 分数阶边值问题 不动点定理 上下解 正解 fractional boundary value problem fixed point theorem lower and upper solution positive solution
  • 相关文献

参考文献11

  • 1I Podlubny. Fractional Differential Equations[ M ] . San Diego:Ac- ademic Press, 1999. 被引量:1
  • 2S Samko, A Kilbas, O Marichev. Fractional Integrals and Deriva- tives: Theory and Applications [ M ]. Yverdon: Gordon and Breach, 1993. 被引量:1
  • 3K Miller, B Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations[ M ]. New York : Wiley, 1993. 被引量:1
  • 4C Yuan. Multiple positive solutions for ( n - 1, 1 ) - type semiposi- tone conjugate boundary value problems of nonlinear fractional dif- ferential equations[ J~. E ,l Qualitative Theory of Diff Equ,2010, 36:1 -12. 被引量:1
  • 5Xu, Z Yang. Multiple positive solutions of a singular fractional boundary value problem [ J ]. Applied Mathematics E - Note ,2010, 10:259 - 267. 被引量:1
  • 6J Xu, Z Wei, W Dong. Uniqueness of positive solutions for a class of fractional boundary value problem[ J]. Appl Math Lett,2012,25 : 590 - 593. 被引量:1
  • 7S Liang, J Zhang. Positive solutions for boundary value problems of nonlinear fractional differential equation [ J ]. Nonlinear Anal, 2009,71:5545 - 5550. 被引量:1
  • 8Y Zhao, S Sun, Z Han, et al. The existence of multiple positive so- lutions for boundary value problems of nonlinear fractional differen- tial equations [ J ]. Commun Nonlinear Sci Numer Simulat,2011,16 : 2086 - 2097. 被引量:1
  • 9S Zhang. Monotone iterative method for initial value problem invol- ving Riemann - Liouville fractional derivatives [ J ]. Nonlinear A- nal,2009,71:2087 -2093. 被引量:1
  • 10A Shi, S Zhang. Upper and lower solutions method and a fractional differential equation boundary value problem [ J ]. E J Qualitative Theory of Diff Equ, 2009, 30:1 - 13. 被引量:1

同被引文献13

  • 1MILLER K, ROSS B. An introduction to the fractional calculus and fractional differential equations [M]. New York: Wiley, 1993. 被引量:1
  • 2KILBAS A, SRIVASTAVA H, TRUJILLO J. Theory and applications of fractional differential equations [M]. Amsterdam : Elsevier, 2006. 被引量:1
  • 3LAKSHMIKANTHAM V, LEELA S, VASUNDHARA Devi J. Theory of fractional dynamic systems [M]. Cambridge: Cambridge Academic Publishers, 2009. 被引量:1
  • 4WEI Zhongli, LI Qingdong, CHE Junling. Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative[J]. J Math Anal Appl, 2010,367 (1): 260-272. 被引量:1
  • 5WEI Zhongli, DONG Wei, CHE Junling. Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative[J]. Nonlinear Anal: Theory, Methods Applications, 2010,73 (10): 3232 3238. 被引量:1
  • 6. McRAE F A. Monotone iterative technique and existence results for fractional differential equations [ J ]. Nonlinear Anal: Theory, Methods Applications, 2009,71 (12) . 6093-6096. 被引量:1
  • 7BENCHOHRA M, HAMANI S. The method of upper and lower solutions and impulsive fractional differ-ential inclusions [ J ]. Nonlinear Anal Hybrid Systems, 2009,3 (4) : 433-440. 被引量:1
  • 8KHAN R A. Existence and approximation of solutions to three-point boundary value problems for fractional differential equations [J ]. Electronic Journal of Qualitative Theory of Differential Equations, 2011, 16 (5) = 1-8. 被引量:1
  • 9WANG Jinhua, XIANG Hongiun. Upper and lower solutions method for a class of singular fractional boundary value problems with p-Laplacian operator [J]. Abstract and Applied Analysis, 2010, Article ID= 971824, 12. 被引量:1
  • 10BAI Chuanzhi. Impulsive periodic boundary value problems for fractional differentia equation involving Riemann-Liouville sequential fractional derivative[J]. Journal of Mathematical Analysis and Applications, 2011,384 (2) :211-231. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部