摘要
本文利用上下解方法与不动点定理研究分数阶边值问题Dα0+u(t)+f(t,u)=0,0<t<1u(j)(0)=0,u(1)=0,0≤j≤n-{2正解的存在唯一性,这里n-1<α<n(n≥3),Dα0+是Riemann-Liouville分数阶导数,f:[0,1]×[0,+∞)→(0,+∞)是连续函数。
The existence and uniqueness of positive solutions was explored for boundary value problem of the nonlinear fractional differential equation.{Dα0 +u( t) + f( t,u) = 0,0 t 1u(j)(0) = 0,u(1) = 0,0 ≤ j ≤ n-2Here n- 1 α n( n ≥ 3),Dα0 +is a real number,Dα0 +is the Riemann-Liouville's fractional derivative,and f:[0,1] × [0,+ ∞) →(0,+ ∞) is continuous. By means of lower and upper solution method and fixed point theorems,some results on the positive solutions were obtained for the above problem.
出处
《贵州大学学报(自然科学版)》
2015年第3期4-6,共3页
Journal of Guizhou University:Natural Sciences
基金
国家自然科学基金项目资助(10791197)
山东省高等学校科技计划项目资助(J09LA55)
齐鲁师范学院青年基金项目资助(2013L1301)
关键词
分数阶边值问题
不动点定理
上下解
正解
fractional boundary value problem
fixed point theorem
lower and upper solution
positive solution