期刊文献+

基于MapReduce的聚类算法相似性度量分析研究 被引量:2

Research on Similarity Measurement Analysis of Clustering Algorithm Based on MapReduce
下载PDF
导出
摘要 相似性度量在聚类算法设计中起关键作用,使用合适的距离度量函数能够反映数据对象间的相似性。本文对聚类算法中数据对象间相似性度量的特征进行了系统性归纳总结,通过MapReduce编程模型实现对各种相似性度量聚类算法的实验比较分析,将为聚类分析研究者提供参考。 The similarity measure plays a key role in clustering algorithms. Using appropriate distance measure function can reflect the similarity between data objects. This paper aims to conduct a systematic summary on data objects similarity measure in clustering algorithms. The paper will also implement comparative analysis on various similarity measure clustering algorithms by MapReduce programming model,which can provide references to researchers on clustering algorithms.
作者 彭天昊 潘有顺 杨胜林 PENG Tianhao;PAN Youshun;YANG Shenglin(Moutai Institute,Department of Brewing Engineering Automation,Renhuai 564507,China)
出处 《现代信息科技》 2018年第11期10-12,共3页 Modern Information Technology
关键词 聚类 相似性度量 MAPREDUCE clustering similarity measure MapReduce
  • 相关文献

参考文献10

二级参考文献133

  • 1刘小芳,曾黄麟,吕炳朝.点密度函数加权模糊C-均值算法的聚类分析[J].计算机工程与应用,2004,40(24):64-65. 被引量:28
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Mean算法[J].计算机学报,2006,29(10):1797-1803. 被引量:45
  • 4Zhou MQ, Zhang R, Zeng DD, Qian WN, Zhou AY. Join optimization in the MapReduce environment for column-wise data store. In: Fang YF, Huang ZX, eds. Proc. of the SKG. Ningbo: IEEE Computer Society, 2010.97-104. [doi: 10.1109/SKG.2010.18]. 被引量:1
  • 5Afrati FN, Ullman JD. Optimizing joins in a Map-Reduce environment. In: Manolescu I, Spaecapietra S, Teubner J, Kitsuregawa M, Leger A, Naumann F, Ailamaki A, Ozcan F, eds. Proc. of the EDBT. Lausanne: ACM Press, 2010. 99-110. [doi: 10.1145/ 1739041.1739056]. 被引量:1
  • 6Sandholm T, Lai K. MapReduce optimization using regulated dynamic prioritization. In: Douceur JR, Greenberg AG, Bonald T, Nieh J, eds. Proc. of the SIGMETRICS. Seattle: ACM Press, 2009. 299-310. [doi: 10.1145/1555349.1555384]. 被引量:1
  • 7Hoefler T, Lumsdaine A, Dongarra J. Towards; efficient MapReduce using MPI. In: Oster P, ed. Proc. of the EuroPVM/MPI. Berlin: Springer-Verlag, 2009. 240-249. [doi: 10.100'7/978-3-642-03770-2_30]. 被引量:1
  • 8Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in MapReduce. PVLDB, 2010, 3(1-2):494-505. 被引量:1
  • 9Kambatla K, Rapolu N, Jagannathan S, Grama A. Asynchronous algorithms in MapReduce. In: Moreira JE, Matsuoka S, Pakin S, Cortes T, eds. Proc. of the CLUSTER. Crete: IEEE Press, 2010. 245-254. [doi: 10.1109/CLUSTER.2010.30]. 被引量:1
  • 10Polo J, Carrera D, Becerra Y, Torres J, Ayguad6 E, Steinder M, Whalley I. Performance-Driven task co-scheduling for MapReduce environments. In: Tonouchi T, Kim MS, eds. Proc. of the 1EEE Network Operations and Management Symp. (NOMS). Osaka: IEEE Press, 2010. 373-380. [doi: 10.1109/NOMS.2010.5488494]. 被引量:1

共引文献1577

同被引文献17

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部