期刊文献+

基于CNN的可见光屏幕通信识别与解析机制 被引量:2

Visible Light Screen Communication Recognition and Resolution Mechanism based CNN
下载PDF
导出
摘要 鉴于可见光屏幕通信具有抗干扰能力强、不占用频谱资源和链路部署简单易于交互等特点,设计了基于卷积神经网络(CNN)的可见光屏幕通信系统。重点阐述了帧结构的定义、接收单元CNN模块的引入以及解析机制的设计。帧结构的定义确保了整个系统的可靠性,丰富了屏幕通信传输内容的多样性;CNN模块的引入使接收单元可以自动识别屏幕发送的内容,不依赖传统的定位检测图形,提高了智能化和信息携带量;两种解析机制的设计提高了屏幕通信的普适性。实验系统实现了96.4%的识别成功率,达到实时150kbit/s和非实时300kbit/s的通信速率,可以传输文本、图片和音频等类型的文件。 Visible light screen communication has the characteristics of strong anti interference ability, no occupation of frequen- cy spectrum resources, simple link deployment, and easy interaction. This paper designs a visible light screen communication system based on Convolutional Neural Network (CNN). It includes the definition of the frame structure, the introduction of the receiving unit CNN module, and the design of the resolution mechanism. The definition of the frame structure ensures the reliability of the system and enriches the diversity of the transmission content of the screen communication. The introduction of the CNN module allows the receiving unit to automatically identify the content sent by the screen. It also does not rely on traditional positioning detection patterns, which improves the intelligence and information carrying capacity. The design of the two resolution mechanisms improves the universality of screen communication. It can achieve 96.4% recognition success rate at real time 150 kbit/s and non real time 300 kbit/s communication rate, which can be used to transmit text, picture, audio type files.
作者 刘文楷 徐一鸣 武梦龙 LIU Wen-kai;XU Yi-ming;WU Meng-long(College of Computing;College of Electronic Information Engineering,North China University of Technology,Beijing 100144,China)
出处 《光通信研究》 北大核心 2018年第6期42-46,共5页 Study on Optical Communications
基金 国家自然科学基金资助项目(61471052)
关键词 可见光通信 屏幕通信系统 卷积神经网络 解析机制 visible light communication screen communication system CNN resolution mechanism
  • 相关文献

参考文献2

二级参考文献38

  • 1Perli S D, Ahmed N, Katabi D. Pixnet: Interference-free wireless links using lcd-camera pairs [A ]. Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking [C]. USA: ACM, 2010. 137 - 148. 被引量:1
  • 2Ashok A, Gruteser M, Mandayam N, et al. Characterizing multiplexing and diversity in visual MIMO [ A ]. Proceed- ings of the 45th Annual Conference on Information Sci- ences and Systems ( CISS ) [C ]. USA : IEEE, 2011. 1 - 6. 被引量:1
  • 3Yuan W, Dana K, Varga M,et al. Computer vision methods fbr visual MIMO optical system[ A]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition Workshops ( CVPRW ) [ C ]. USA : IEEE, 201 1 :37 -43. 被引量:1
  • 4Ashok A,Gruteser M, Mandayam N, et al. Rate adaptation in visual MIMO[ A ]. Proceedings of the 8th Annual IEEE Communications Society Conference on Sensor, Mesh andAd Hoc Communications and Networks (SECON) [ C]. USA:IEEE,2011.583 -591. 被引量:1
  • 5Yuan W, Howard R E, Dana K J, et al. Phase messaging method for time-of-flight cameras [ A]. Proceedings of IEEE International Conference on Computational Photogra- phy (ICCP) [C ]. USA: IEEE,2014,1 - 8. 被引量:1
  • 6Yuan W, Dana K, Ashok A, et al. Dynamic and invisible messaging for visual MIMO [ A ]. Proceedings of IEEE Workshop on Applications of Computer Vision (WACV) [ C ]. USA : IEEE,20 t 2. 345 - 352. 被引量:1
  • 7Ashok A, Gruteser M, Mandayam N, et al. Challenge : Mo- bile optical networks through visual MIMO[ A]. Proceed- ings of the Sixteenth Annual International Conference on Mobile Computing and Networking [ C ]. USA: ACM, 2010. 105 - 112. 被引量:1
  • 8Zhang B, Ren K, Xing G, et al. SBVLC : Secure barcode- based visible light communication for smartphones[ A]. Proceedings of IEEE INFOCOM [ C ]. USA : IEEE, 2014. 2661 - 2669. 被引量:1
  • 9Lowe D G. Distinctive image features fi'om scale-invariant key points[ J]. International Journal of Computer Vision,2004,60 (2) :91 - 110. 被引量:1
  • 10Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision [ A ]. Pro- ceedings of the 7th International Joint Conference on Ar- tificial Intelligence [ C ]. San Francisco, CA, USA: Mor- gan Kaufmann Publishers Inc, 1981. 674-679. 被引量:1

共引文献6

同被引文献19

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部