期刊文献+

基于卷积-自动编码机的三维形状特征学习 被引量:14

3D Feature Learning via Convolutional Auto-Encoder Extreme Learning Machine
下载PDF
导出
摘要 三维形状特征在三维物体分类、检索和语义分析中起着关键的作用.传统的三维特征设计过程繁复,而且不能从已有的大量三维数据中自动学习而得.在深度神经网络的研究领域中,卷积神经网络和自动编码机是比较流行的2种网络结构.在超限学习机的框架之下,将两者结合起来,提出一种基于卷积-自动编码机的三维特征自动学习方法.实验结果表明,文中方法的特征学习速度比其他深度学习方法提高约2个数量级,且提取的特征在三维模型分类、三维物体检测等任务中都取得了良好的结果. 3D shape features play a crucial role in graphics applications like 3D shape matching, recognition, and retrieval. Traditional 3D descriptors are hand-crafted features which are labor-intensively designed and are unable to extract discriminative information from existing large-scale 3D data. Convolutional neuron networks and auto-encoders are two most popular neuron networks in the field of deep learning. Based on the framework of extreme learning machines, we propose a rapid 3D feature learning method-convolutional extreme learning machine auto-encoder, which could automatically learn shape features from 3D shape dataset. Our method runs faster than existing deep learning methods by approximately two orders of magnitude. Experiments show that our method is superior to traditional machine learning methods based on hand-crafted features and other deep learning methods in tasks of 3D shape classification and 3D object detection.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第11期2058-2064,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61379103 61303185) 国家自然科学基金杰青基金(61125201)
关键词 卷积神经网络 自动编码机 超限学习机 三维特征提取 convolutional neuron networks auto-encoders extreme learning machines(ELM) 3D feature learning
  • 相关文献

参考文献15

  • 1Bengio Y, Courville A, Vincent P. Representation learning: Areview and new perspectives[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2013, 35(8): 1798-1828. 被引量:1
  • 2Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learningapplied to document recognition[J]. Proceedings of the IEEE,1998, 86(11): 2278-2324. 被引量:1
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionalityof data with neural networks[J]. Science, 2006, 313(5786):504-507. 被引量:1
  • 4Hinton G, Osindero S, Teh Y W. A fast learning algorithm fordeep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. 被引量:1
  • 5Wu Z, Song S, Khosla A, et al. 3D ShapeNets: a deep representationfor volumetric shape modeling[OL]. [2015-08-20].http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_087.pdf. 被引量:1
  • 6Zhu Z, Wang X, Bai S, et al. Deep learning representation usingautoencoder for 3D shape retrieval[OL]. [2015-08-20].http://arxiv.org/pdf/1409.7164.pdf. 被引量:1
  • 7Chamara L L, Zhou H, Huang G B. Representational learningwith ELMs for big data[J]. IEEE Intelligent Systems, 2013,28(6): 31-34. 被引量:1
  • 8Huang G B, Bai Z, Kasun L L C, et al. Local receptive fieldsbased extreme learning machine[J]. IEEE Computational IntelligenceMagazine, 2015, 10(2): 18-29. 被引量:1
  • 9Masci J, Meier U, Cire-an D, et al. Stacked convolutional auto-encoders for hierar-chical feature extraction[M]// ArtificialNeural Networks and Machine Learning–ICANN, Vol 6791Berlin: Springer, 2011: 52-59. 被引量:1
  • 10Huang G B, Chen L, Siew C K. Universal approximation usingincremental constructive feedforward networks with randomhidden nodes[J]. IEEE Transactions on Neural Networks, 2006,17(4): 879-892. 被引量:1

同被引文献49

引证文献14

二级引证文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部