期刊文献+

结构纹理分离的对比度和细节增强 被引量:8

Contrast and detail enhancement based on structure and texture
下载PDF
导出
摘要 针对光照不足等因素造成获取的图像质量偏低的问题,提出一种基于结构层和纹理层分离的图像增强方法。首先将图像分为结构层和纹理层两部分,对结构层用累积分布函数构造参数自适应的Gamma校正算法,并用自适应Gamma校正算法对图像的结构层进行对比度和亮度增强,对纹理层采用提升高频分量的方法增强纹理细节,最后把增强后的结构层与纹理层结合得到增强后的图像。仿真对比实验表明,该方法能避免图像增强过程中纹理细节丢失的问题,亮度和对比度也得到了很好的提升,增强后的图像视觉效果好,具有一定的应用价值。 Targeted at the image lower quality due to insufficient shine,this paper proposed a method for image enhancement based on the separation of structure layer and texture layer. Firstly,it broke down the image to structure layer and texture layer. Then it used the cumulative distribution function to construct the parameter self-adaptive Gamma correction algorithm for the structure layer,and used the same algorithm to enhance the contrast ratio and light intensity of the image structure layer and adopted the method of high frequency component to enhance the texture details in the texture layer. Finally,it combined the enhanced structure layer and texture layer and got the enhanced image. The simulation contrast experiment proves that the method may avoid the loss of texture details in the process of image enhancement and improves the light intensity as well as the contrast ratio to large extent,making the enhance image much better in visual effect. It is certainly valuable in the application.
作者 尹超 郭晓金 田肖 何川 Yin Chao;Guo Xiaojin;Tian Xiao;He Chuan(College of Information & Communication Engineering,Chongqing University of Posts & Telecommunications,Chongqing 400065,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第12期3832-3835,共4页 Application Research of Computers
基金 重庆市科委项目基金资助项目(CSTC2015JCYJA40032)
关键词 结构层 GAMMA校正 图像细节增强 对比度 structure layer Gamma correction image detail enhancement contrast ratio
  • 相关文献

参考文献4

二级参考文献46

  • 1赵忠明,朱重光.遥感图象中薄云的去除方法[J].环境遥感,1996,11(3):195-199. 被引量:65
  • 2LAND E H,MOCANN J J.Lightness and retinex theory[J].Journal of the Optical Society of America,1971,61(1):1-11. 被引量:1
  • 3RAHMANZIA Z-U,JOBSON D J,WOODELL G A.Retinex processing for automatic image enhancement[J].Journal of Electronic Imaging,2004,13(1):100-110. 被引量:1
  • 4BRAINARD D H.WANDELL B A.Analysis of the Retinex theory of color vision[J].Optical Society of America,1986,3(10):1651 -1661. 被引量:1
  • 5JOBSON D J,RAHMAN Z-U,WOODELL G A.Properties and performance of a center/surround Retinex[J] ,IEEE Transactions on Image Processing,1997,6(3):451 -462. 被引量:1
  • 6LAND E H.An alternative technique for the computation of the designator in the Retinex theory of color vision[J].Physics,1986,83:3078-3080. 被引量:1
  • 7RAHMAN Z-U,JOBSON D J,WOODELL G A.Multi-scale Retinex for color image enhancement[EB/OL].[2009-12-15].ftp://vipsun.larc.nasa.gov/pub/papers/icip96_multr. 被引量:1
  • 8JOBSON D J,RAHMAN Z-U,WOODELL G A.A multi-scale Retinex for bridging the gap between color images and the human observation of scenes[J].IEEE Transactions on Image Processing:Special Issue on Color Processing,1997,6(7):965 -976. 被引量:1
  • 9Finlayson G D, Funt B V, Barnard K. Color constancy under varying illumination[C]//Proceedings of the Fifth International Conference on Computer Vision. Washington DC, USA: IEEE Computer Society, 1995: 720 -725. 被引量:1
  • 10Semo S, Spitzer H. Color constancy: a biological model and its application for still and video images [J]. The Journal of the Pattern Recognition Society, 2002,35(8) : 1645 - 1659. 被引量:1

共引文献103

同被引文献83

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部