期刊文献+

面向人脸识别的复杂光照下图像细节增强算法 被引量:2

Details Strengthen Algorithm for Face Image Recognition in Complex Illumination Conditions
下载PDF
导出
摘要 为了提高在光照过度、不足或不均等复杂光照条件下的人脸识别率,提出一种复杂光照条件的人脸图像细节强化算法。首先采用对数和非线性变换对人脸图像动态范围进行压缩;然后利用反锐化掩模滤波算法消除图像模糊,增强人脸图像细节信息;最后采用Adaboost算法建立人脸分类器,并采用Yale B人脸图像数据进行仿真测试。仿真结果表明,该算法解决了复杂光照条件对人脸图像的不利影响,并进一步提高了人脸识别率。 In order to improve the rate of face recognition in excessive,inadequate,or non-uniform complex illumination conditions,a details strengthen al- gorithm for face image in the complex illunfination conditions is proposed in this paper. Firstly ,logarithmic and nonlinear transform is used to compress the dynamic range of face image. Then the unsharp mask filtering algorithm is used to remove the fuzzy image message to enhance the details of face image, Final- ly ,adatx)ost algorithm is used to build a classifier for face recognition,and the simulation test is carried out on Yale B face database. The simulation results show that the proposed algorithm has solved problem for face recognition in complex illumination conditions and improved the face recognition rate.
作者 卓志宏
出处 《电视技术》 北大核心 2014年第3期12-15,26,共5页 Video Engineering
关键词 RETINEX算法 预处理 复杂光照 人脸识别 Retinex algorithm pretreatment complex illumination face recognition
  • 相关文献

参考文献11

二级参考文献93

共引文献113

同被引文献26

  • 1SILVA D, YAMASAKI T, AIZAWA K. Embedded tags and visual querying for face photo retrieval [ C ]//Proc. Pacific Rim Conference on Multimedia. Taiwan: [ s. n. ] ,2008:446-455. 被引量:1
  • 2PHILLIPS P J, HYEONJOON M, RIZVI S A, et al. The FERET e-valuation methodology for face recognition algorithms [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000,22 ( 10 ) : 1090-1104. 被引量:1
  • 3PHILLIPS J, CROTItER P, BONE M. FRVT 2002: evaluation re- port[ EB/OL]. [ 2014-07-21 ]. http ://www. fit, nrg,/DLs/FRVT_ 2002_Evaluation_Report. pdt. 被引量:1
  • 4PHILLIPS J, FLYNN J, WOREK W. Preliminary. face recognition grand challenge results [ C ]//Proc. Automatic Faee and Gesture Recognition. Southampton : IEEE Press, 2006 : 15-24. 被引量:1
  • 5YAN G, LI J, YU M. Illumination variation in face recognition: a review [ C ]//Prat'. Intelligent Networks and Intelligent Systems. Tianjin : IEEE Press, 2009:309-311. 被引量:1
  • 6XIE X, ZHENG W, LAI J. Face illumination normalizmion on large and small scale features [ C]//Proc. Computer Vision and Pattern Recognition. Anchorage, AK : IEEE Press, 2008 : 1-8. 被引量:1
  • 7DANDPAT S, MEHER S. Quality based illumi-nation compensation ibr face recognition [ C]//Proc. hnage Information Processing (ICI- IP). Himachal Pradesh : IEEE Press, 2011 : 1-4. 被引量:1
  • 8SHI Y, YANG J, WU R. Reducing iUumination based on nonlinear gamma correction [ C 1//Proc. Image Processing. San Antonio, TX : IEEE Pss ,2007 : 1-529-1-532. 被引量:1
  • 9HAN H, SHAN S, GAO W. Illumination transfer using homomorphic wavelet filtering and its application to light-insensitive face teogni- tion[ C]//Proc. Automatic Face & Gesture Recognition. Amster- dam : 1EEE Press, 2008 : 1-6. 被引量:1
  • 10MCLAUGFILIN N, Jl M,CROOKERS D. Illun'dnation invariant fa- cial recognition using a pieeewise-constant lighting model[ C ]// Proc. Acoustics, Speech and Signal Processing (ICASSP). Kyoto: IEEE Press, 2012 : 1537-1540. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部