期刊文献+

一种改进的核相关滤波目标跟踪方法研究 被引量:3

An improved kernel correlation filter object tracking method
下载PDF
导出
摘要 针对目标跟踪领域视频图像序列经常出现遮挡、光照变化和快速移动等难点,提出了一种融合目标上下文信息和超像素级特征的核相关滤波跟踪方法,目标与其周围的信息存在相关性,利用中层视觉特征(超像素)构建目标的上下文滤波模型,在相关滤波框架下,实现对目标的快速训练和定位。实验结果表明,和其他相关滤波类算法相比,所提出的算法在处理以上跟踪难点时,精确度更高,且鲁棒性更强,同时能以较快的速度运行,满足实时性的要求。 Aiming at the difficult points of occlusion, illumination change and fast moving of video sequences in object tracking area, a new filtering method based on object context information and superpixel feature is proposed. There is a correlation between the object and the surrounding information. The object context filter model of the target is construe-ted by using the mid-level vision feature (superpixels). Under the frame of correlation filtering, the fast training and positioning of the target can be achieved. The experimental results show that compared with other correlation filters al-gorithms, the proposed algorithm has higher accuracy and robustness in dealing with the above tracking difficulties, and can run at a faster speed,meeting the real-time requirements.
作者 朱伟杰 唐晶磊 王栋 冀马超 ZHU Wei-jie;TANG Jing-lei;WANG Dong;JI Ma-chao(College of Information Engineering,Northwest A&F University,Yangling 712100,China;College of Computer Science and Engineering,Northeastern University,Shenyang 110169,China)
出处 《激光与红外》 CAS CSCD 北大核心 2018年第11期1430-1435,共6页 Laser & Infrared
关键词 视频图像序列 上下文 超像素 目标跟踪 相关滤波 video sequences context superpixel object tracking correlation filters
  • 相关文献

参考文献1

二级参考文献14

  • 1Gordon N J, Salmond D J, Smith AFM. Novel approach to nonlinear/mon-Gaussian Bayesianstste estimation [ J ]. IEEE-Proceedings-Radar, Sonar and Navigation, 1993, 140(2) :107 - 113. 被引量:1
  • 2Hue C, Cadre L. Sequential Monte Carlo methods for mul- tiple target tracking and data fusion [ J ]. IEEE Transac- tions on Signal Processing,2002,50(2) :309 -325. 被引量:1
  • 3Arulampalam S, Maskell S, Gordon N, et al. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayes- ian tracking[ J]. IEEE Transactions on Signal Processing, 2002,50(2) :174 - 188. 被引量:1
  • 4J S Liu. Monte carlo strategies in scientific computing [ M ]. Berlin : Springer,2001. 被引量:1
  • 5Kaiming He. Guided Image Filtering [ J ]. IEEE transac- tions on pattern analysis and machine intelligence,2013, 35(6) :1397 - 1409. 被引量:1
  • 6A Zomet, SPeleg. Multi-Sensor Super Resolution [ C ]. Pro- ceedings of 6th IEEE Workshop on Applications of Com- puter Vision( WACV '02) , December 2002, Orlando, Fla, USA :27 - 31. 被引量:1
  • 7A Levin, D Lischinski, Y Weiss. A closed form solution to natural image matting [ J ] Proc. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30, (2) :228 - 242. 被引量:1
  • 8K He, J Sun, X Tang. Single image haze removal using dark channel prior[ J ]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2011, 33 ( 12 ) : 2341 - 2353. 被引量:1
  • 9N Draper, HSmith. Applied regression analysis [ M ]. 2nd ed. New York :John Wiley, 1981. 被引量:1
  • 10T Hastie, R Tibshirani, J H Friedman. The elements of statistical learning [ M] . Berlin : Springer,2003. 被引量:1

共引文献2

同被引文献18

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部