摘要
为了实现在复杂情况中对特定目标的路线跟踪,主要研究了基于循环相关滤波器的目标跟踪算法,并针对复杂环境情况下影响跟踪性能的条件进行分析比较。该算法是一种基于线性分类器的监督学习算法,通过添加空间正则化分量减少边界效应,提取准确目标。在OTB-50和OTB-100数据集上进行算法验证,实验表明,该算法的跟踪结果优于其他算法,在快速移动、背景杂乱、光照变化、遮挡、移出视线和运动模糊6种复杂情况下跟踪准确度比传统算法均高出0.1以上。
In order to realize the tracking of a specific target in a complex scene,this paper mainly studies the object tracking algorithm,which based on discriminative correlation filters,analyzing and comparing the conditions that affect the performance in complex scene.This algorithm is a supervised learning algorithm based on linear classifier to extract accurate targets by adding spatial regularization components to reduce boundary effects.The algorithm is verified on OTB-50 and OTB-100.The experiment show that the tracking results of the algorithm are better than other algorithms.The accuracy of the algorithm is higher than 0.1 that of traditional algorithms in six complex scenes:fast motion,background clutter,illumination variation,occlusion,out of view and motion blur.
作者
王鑫瑞
陈明
Wang Xinrui;Chen Ming(School of Computer Science,Xi'an Polytechnic University,Xi'an 710048,China;Hunan Vanguard Group CO.LTD,Changsha 419503,China)
出处
《国外电子测量技术》
2020年第4期22-25,共4页
Foreign Electronic Measurement Technology
基金
国家自然科学基金(51675108)
广东省计算机集成制造重点实验室开放基金(CIMSOF2016001)项目资助。
关键词
目标跟踪
单目标跟踪
相关滤波
object tracking
single object tracking
correlation filters