期刊文献+

基于隐朴素贝叶斯分类方法的垂直切换算法 被引量:5

Adaptive Vertical Switching Algorithm Based on Hidden Naive Bayesian Classification
下载PDF
导出
摘要 为解决车辆在相对高速运动下产生网络间切换的"乒乓效应",根据隐朴素贝叶斯分类思想,突破原有贝叶斯决策中关于属性之间完全独立的假设,建立属性间的关系,同时引入自适应修正概率,降低切换次数,避免了运算的复杂度。仿真结果表明,改进算法与原算法及其他算法相比较,可以有效降低切换次数,并且拥有更低的运行时间,提升了在车联网环境下垂直切换的稳定性与效率。 In order to solve the'ping-pong effect'of network switching caused by vehicles moving at relatively high speed,according to the idea of Hidden Naive Bayesian Classification,the relationship between attributes is established by breaking through the assumption that attributes are completely independent in the original Bayesian decision-making.And self-adaptive correction probability is introduced to reduce the number of switching and avoid calculation complexity.The simulation results show that,compared with the original algorithm and other algorithms,the improved algorithm can effectively reduce the number of handoffs,and has lower running time,which improves the stability and efficiency of vertical handoff in the environment of vehicular networking.
作者 李宏磊 丛玉良 任柏寒 LI Honglei;CONG Yuliang;REN Baihan(College of Communication Engineering,Jilin University,Changchun 130012,China;No.63782 Unit,Peoples Liberation Army of China,Harbin 150039,China)
出处 《吉林大学学报(信息科学版)》 CAS 2019年第3期238-244,共7页 Journal of Jilin University(Information Science Edition)
基金 吉林省科技发展计划基金资助项目(20160312019ZG)
关键词 第4代通讯技术 车载自组织网络 无线网络 隐朴素贝叶斯分类 垂直切换 the 4 generation mobile communication technology(4G) vehicular ad-hoc network(VANET) Wi-Fi hidden naive bayesian(HNB)classification vertical handoff
  • 相关文献

参考文献5

二级参考文献16

  • 1Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations[M].Seattle: Morgan Kaufmann Publishers,2000. 265 - 314. 被引量:1
  • 2Kononenko I. Semi - Naive Bayesian Classifiers[A]. In:Proceedings of European Conference on Artificial Intelligence[C].Porto, Portugal: Springer-Verlag, 1991. 206-219. 被引量:1
  • 3Langley P,Sage S. Induction of Selective Bayesian Classifiers[A]. In: Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence[C]. Seattle, WA: Morgan Kaufmann Publishers, 1994. 339 - 406. 被引量:1
  • 4Kohavi R. Scaling up the Accuracy of Naive - Bayes Classifiers: A Decision- Tree Hybird[A]. In: Simoudis E, Han J W, Fayyad U M. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining [ C ].Menlo Park, CA: AAAI Press, 1996. 202 - 207. 被引量:1
  • 5Zheng Z, Webb G I. Lazy Learning of Bayesian Rules[J].Machine Learning, 2000, 41: 53- 84. 被引量:1
  • 6Wang Z H,Webb G I. A Heuristic Lazy Bayesian Rule Algorithm[A]. In:Simoff S J ,Williams G J ,Hegland M. Proceedings of Australian Data Mining Workshop[C]. Sydney, Australia: Sydney University of Technology Press, 2002. 57 -63. 被引量:1
  • 7Pazzani M J. Constructive Induction of Cartesian Product Attributes[A]. In: Proceedings of the Conference on Information, Statistics and Induction in Science [C]. Singapore:World Scientific, 1996.66 - 77. 被引量:1
  • 8Wang Z H,Webb G I,Zheng F. Adjusting Dependence Relations for Semi - Lazy TAN Classifiers[A]. In: Advances in Artificial Intelligence, LNAI 2903 [ C]. Berlin Heidelberg:Springer - Verlag, 2003. 453 - 456. 被引量:1
  • 9Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers[ J ]. Machine Learning, 1997, 29 (2 - 3 ): 131 -163. 被引量:1
  • 10Zhang H, Ling C X. An Improved Learning Algorithm for Augmented Naive Bayes[A]. In: Proceedings of the Fifth Pacific- Asia Conference on KDD[ C ]. Hong Kong, China:Springer, 2001. 581 - 586. 被引量:1

共引文献21

同被引文献30

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部