期刊文献+

基于虚拟样机的采煤机摇臂故障诊断系统 被引量:3

The shearer rocker fault diagnosis based on virtual prototype
下载PDF
导出
摘要 以采煤机虚拟样机实验为基础,以小波包分解和神经网络为辅助,设计一种多参数复杂机械故障诊断方法,使设备在投入使用之前就具有一套适应自身的故障诊断系统:即根据采煤机设计图样进行齿轮故障形式下的刚柔耦合虚拟样机实验,以虚拟样机实验中的惰轮轴为测试点,采集受力信号,经过小波分解,以小波分解子带能量值组成神经网络输入向量,对神经网络进行训练,得出可以根据惰轮轴受力信号诊断齿轮故障的神经网络系统。将故障虚拟样机应用到整体执行机构上,建立多个采样点作为故障信号的输出,采集受力信息,经反复实验分析得出一个收敛的神经网络故障诊断系统;重复进行虚拟样机实验,提取信号,验证系统的可靠性。 Presenting a fault diagnosis method in complex machine based on the shearer virtual prototyp experiment. The method is building a series of fault virtual prototyp experiment for its weight of testpoint, and then acquiring the fault-expression-vector corresponds to weight information by wavelet decomposition and neural network analysis. Through the analysis of neural network, building a classification system to diagnose the fault of machine. The fault virtual prototyp was applied to whole machine, and various testpoint was set. At length, the method was verified by simulation signals and engineering examples of mechanical fault diagnosis effectively.
作者 赵丽娟 付东波 李明昊 Zhao Lijuan;Fu Dongbo;Li Minghao(College of Mechanical Engineering,Liaoning Technical University,Fuxin 123000,Liaoning,China)
出处 《现代制造工程》 CSCD 北大核心 2018年第11期142-148,共7页 Modern Manufacturing Engineering
基金 国家自然科学基金项目(51674134)
关键词 故障诊断 柔性体 虚拟样机 神经网络 fault diagnosis flexible bodies virtual prototype neural network
  • 相关文献

参考文献6

二级参考文献41

  • 1荆双喜,冷军发,李臻.基于小波-神经网络的矿用通风机故障诊断研究[J].煤炭学报,2004,29(6):736-739. 被引量:22
  • 2王炜,吴耿锋,张博锋,王媛.径向基函数(RBF)神经网络及其应用[J].地震,2005,25(2):19-25. 被引量:57
  • 3王国栋,张建宇,高立新,胥永刚,张雪松.小波包神经网络在轴承故障模式识别中的应用[J].轴承,2007(1):31-34. 被引量:17
  • 4Tandon N, Choudhury A. A review of vibration and acoustic measurement methods for the detection of defects in roller element bearings [ J ]. Tribology International, 1999, 32 : 469 - 480. 被引量:1
  • 5Wu Jian-Da, Chan Jian-Ji. Faulted gear identification of a rotating machinery based on wavelet transform and artificial neural network[J]. Expert Systems with Applications,2009, 36 (5) : 8862 - 8875. 被引量:1
  • 6Williams W J, Zalubas E J. Helicopter transmission fault detection via time-frequency, scale and spectral methods. Mechanical Systems and Signal Processing, 2000,14(4):25 - 30. 被引量:1
  • 7Smith J S. The Local Mean Decomposition and ItsApplication to EEG Perception Data[J]. Journal ofthe Royal Society Interface,2005 ?2(5) :443-454. 被引量:1
  • 8Wang Yanxue,He Zhengjia,Zi Yanyang. A Demod-ulation Method Based on Improved Local Mean De-composition and Its Application in Rub - impactFault Diagnosis[J]. Measurement Science and Tech-nology,2009 ,20(2):1-10. 被引量:1
  • 9BOZCHALOOI I S , LIANG Ming. A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J]. Mechanical Systems and Signal Processing,2007,308 (1-2) : 246-26. 被引量:1
  • 10戋斯瓦米.小波分析理论、算法及其应用[M].北京:国防工业出版社.2007. 被引量:1

共引文献110

同被引文献12

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部