期刊文献+

基于小波神经网络的采煤机摇臂故障诊断的研究 被引量:3

Study of Shearer Rocker Fault Diagnosis Based on Wavelet Neural Network
下载PDF
导出
摘要 针对采煤机机械系统故障信号诊断的问题,在小波分析和神经网络的基础上,采用了一种基于小波神经网络诊断采煤机摇臂故障的方法。根据摇臂振动的信号通过小波分析检测出信号奇异点和突变情况,利用小波基函数作为小波神经网络的激励函数对故障信号做进一步的诊断,判断出故障特点和程度。结果证明此方法在故障诊断中的诊断准确率较高。 Considering the failure of mechanical system in shearers,this paper proposed a method based on wavelet neural network diagnostic shearer rocker arm failure. This method originates the wavelet analysis and neural network. According to the rocker arm vibration signal, we can obtain the singular point and mutation by wavelet analysis the signal .Then analysis the fault using wavelet basisfunction as the wavelet excitation function of the neural network to do further diagnostic fault signal to determine the failure characteristics and extent. The results prove that this method in fault diagnosisdiagnostic accuracy was better.
机构地区 黑龙江科技大学
出处 《煤矿机械》 北大核心 2013年第10期243-245,共3页 Coal Mine Machinery
关键词 小波分析 神经网络 故障诊断 采煤机 wavelet analysis neural network fault diagnosis shearer
  • 相关文献

参考文献5

  • 1马正兰..变速截割采煤机关键技术研究[D].中国矿业大学,2009:
  • 2彭富强,于德介,罗洁思,武春燕.基于多尺度线调频基稀疏信号分解的轴承故障诊断[J].机械工程学报,2010,46(7):88-95. 被引量:27
  • 3BOZCHALOOI I S , LIANG Ming. A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J]. Mechanical Systems and Signal Processing,2007,308 (1-2) : 246-26. 被引量:1
  • 4戋斯瓦米.小波分析理论、算法及其应用[M].北京:国防工业出版社.2007. 被引量:1
  • 5李士勇编著..模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998:658.

二级参考文献12

  • 1王太勇,何慧龙,王国锋,冷永刚,胥永刚,李强.基于经验模式分解和最小二乘支持矢量机的滚动轴承故障诊断[J].机械工程学报,2007,43(4):88-92. 被引量:33
  • 2BOZCHALOOI I S, LIANG Ming. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detect ability of bearing fault signals[J]. Mechanical Systems and Signal Processing, 2008, 22(4): 915-933. 被引量:1
  • 3BOZCHALOOI I S, LIANG Ming. A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J]. Mechanical Systems and Signal Processing, 2007, 308(1-2): 246-267. 被引量:1
  • 4SHEEN Yuhtay. An analysis method for the vibration signal with amplitude modulation in a bearing system[J]. Journal of Sound and Vibration, 2007, 303(3-5): 538-552. 被引量:1
  • 5SHEEN Yuhtay. An envelope detection method based on the first-vibration-mode of bearing vibration[J]. Measurement, 2008, 41(7): 797-809. 被引量:1
  • 6WANG Jing, XU Guanghua, ZHANG Qing, et al. Application of improved morphological filter to the extraction of impulsive attenuation signals[J]. Mechanical Systems and Simlal Processing, 2009, 23(1~: 236-245_. 被引量:1
  • 7LI Zhen, HE Zhengjia, ZI Yanyang, et al. Customized wavelet denoising using intra- and inter-scale dependency for bearing fault detection[J]. Journal of Sound and Vibration, 2008, 313(1-2): 342-359. 被引量:1
  • 8LI Zhen, HE Zhengjia, ZI Yanyang, et al. Rotating machinery fault diagnosis using signal-adapted lifting scheme[J]. Mechanical Systems and Signal Processing, 2008, 22(3): 542-556. 被引量:1
  • 9MALLAT S G, ZHANG Zhifeng. Matching pursuit with time-frequency dictionaries[J]. Signal Processing, 1993, 41(12): 3 397-3 415. 被引量:1
  • 10CANDIES Detecting pursuit[J]. Analysis, E J, CHARLTON P R, HELGASON H. highly oscillatory signals by chirplet path Applied and Computational Harmonic 2008, 24(1): 14-40. 被引量:1

共引文献26

同被引文献17

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部