摘要
研究了数论函数方程S(SL(n^(11)))=φ_2(n)及S(SL(n^(12)))=φ_2(n)的可解性问题,其中S(n)为Smarandache函数,SL(n)为Smarandache LCM函数,φ_2(n)为广义欧拉函数.利用初等数论的内容方法及计算技巧得到上述两个数论函数方程的所有正整数解.
In this paper we discuss the solvability of the arithmetic function equation S(SL(n^11))=φ2(n)及S(SL(n^12))=φ2(n) of the Smarandache LCM function,where S(n)is a Smarandache function,SL(n)is a Smarandache LCM function,and φ2(n) is a generalized Euler function.All positive integer solutions of the above two arithmetic function equations are obtained by using the elementary number theory method and the calculation technique.
作者
袁合才
王晓峰
YUAN He-cai;WANG Xiao-feng(School of Mathematics and Statistics,North China University of Water Resource and Electric Power,Zhengzhou 450046,China;Department of Math.,Henan Institute of Science and Technology,Xinxiang Henan 453003,China)
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第10期72-76,共5页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金项目(U1304106)
河南省科技攻关项目(172102210367)