期刊文献+

一种基于WiFi信号特征的聚类过滤定位算法研究 被引量:1

On Location Algorithm of Cluster Filtering Based on WiFi Signal Features
下载PDF
导出
摘要 提出一种用于室内车库定位的基于Wi Fi信号强度特征的快速算法.根据信号强度(RSSI)波动变化,提出信号波动聚类算法,可在指纹库中标定初选区域,缩小后续计算范围;根据在该区域内不同RSSI区间的信号波动变化规律设置过滤阈值,可实现动态选择过滤区间,将初选后的指纹数据组进行多次过滤,可进一步减少待选数据组;剩余少量数据组可由最小欧式距离快速计算,完成目标精确定位.算法可大幅度减少计算量和复杂度,提高定位速度. A fast algorithm based on WiFi signal strength features for indoor garage location is proposed. According to thefluctuation of signal strength (RSSI), a signal fluctuation clustering algorithm is proposed, which can calibrate the primaryring region in the fingerprint database and reduce the subsequent calculation range. Multiple filtering can further reduce thenumber of data groups to be selected, and the remaining small number of data groups can be quickly calculated by the mini-mum Euclidean distance to achieve accurate target location. The algorithm can greatly reduce computation complexity andimprove positioning speed.
作者 蔡炯炯 沈涵生 张文辉 王子辉 袁琳 CAI Jiong-jiong;SHEN Han-sheng;ZHANG Wen-hui;WANG Zi-hui;YUAN Lin(School of Automation and Electrical Engineering,Zhejiang University of Science and Technology,Hangzhou310023,China;School of Electrical Engineering,Zhejiang University,Hangzhou 310013,China;Suzhou Industrial Technology Research Institute of Zhejiang University,Suzhou 215010,China)
出处 《浙江水利水电学院学报》 2018年第5期63-67,共5页 Journal of Zhejiang University of Water Resources and Electric Power
基金 浙江省自然科学基金(LY17E070002) 江苏省博士后资助计划(169491)
关键词 室内车库定位 过滤 信号波动特征 聚类 indoor garage location filtering characteristic of signal fluctuation clustering
  • 相关文献

参考文献5

二级参考文献71

  • 1彭飞.移动通信网定位技术发展及应用[J].通讯世界,2003,9(4):44-46. 被引量:2
  • 2雷地球,罗海勇,刘晓明.一种基于WiFi的室内定位系统设计与实现[C]//Proceeding of HHME,2010. Luoyang,Henan:[s.n.], 2010. 被引量:7
  • 3LIU C E. Research on self-localization and target tracking in wireless sensor networks [ D ]. Beijing: Institute of A- coustics, Chinese Academy of Sciences, 2006. 被引量:1
  • 4AKYLDIZ I F, SU W L, SANKARASUBRAMANIAM Y, et al. A survey on sensor networks [ J ]. IEEE Communi- cations Magazine ,2002,40( 8 ) : 102-114. 被引量:1
  • 5BAI-IL P,PADMANABHAN V N. RADAR: An in-build- ing RF-based user localization and tracking system [ C ]. Proc of INFOCOM' 2000, TEL Aviv, Israel, 2000, 2: 775-784. 被引量:1
  • 6BLUMENTHAL J, GROSSMANN R,GOLATOWSKI F, et al. Weighted centroid localization in zigbee-based sensor net- works [ C ] Intelligent Signal Processing, 2007. WISP 22X/7. IEEE International Symposium on,2007:1-6. 被引量:1
  • 7PIVATO P, FONTANA L, PALOPOLI L, et al. Experi- mental assessment of a RSS-based localization algorithm in indoor environment[ C]. Instrumentation and Measure- ment Technology Conference (I2MTC) ,2010:416-421. 被引量:1
  • 8BUJA A, SWAYNE D F, LITTMAN M, et al. XGvis: Interactive data visualization with multidimensional scaling[ J ]. Journal of Computational and Graphical Statistics, 2004,5 : 21-53. 被引量:1
  • 9SHANG Y, RUML W, ZHANG Y. Localization from mere connectivity in sensor networks[ C]. Proc of the 4th ACM Int'l Symp on Mobile Ad Hoc networking & computing, New York: ACM Press,2003:201-212. 被引量:1
  • 10SHANG Y, RUML W. Improved MDS-based localization [ C ]. Proceedings of the 23rd Conference of the IEEE Communications Society, Hong Kong, China, 2004: 2640-2651. 被引量:1

共引文献190

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部