期刊文献+

一种适用于智能家居的能量管理策略及其经济性验证

An Energy Management Strategy for Smart Homes and Economic Verification
下载PDF
导出
摘要 为提高家用独立光伏发电系统的经济性,提出了一种适用于智能家居的能量管理策略,实施简单,条件明确,经济性高。首先提出前提及基本假设,明确了能量管理策略的基础。其次在原有策略基础上加入峰谷电价这一因素,通过灰色预测或马尔科夫模型利用监测数据预报趋势,减小了光伏发电不稳定因素的影响。最后结合上海市某居民所安装系统,验证了能量管理策略有较高的经济性,5年即可收回投资成本。 In order to improve the economy of independent photovoltaic power systems,an energy management strategy for smart homes was proposed. The strategy is simple to implement with clear conditions and high economy.First,the premise and basic assumption were put forward,and the basis of the energy management strategy was clarified.Additionally,the factor of time-of-use price was taken into consideration. And the trend was predicted by monitoring data through grey prediction or Markov model. It reduces the influence of instability of photovoltaic power. Finally,it was verified by an example in Shanghai that the strategy is profitable,and the investment cost could be recovered in five years.
作者 曾武 孟诗涵 杨睿贤 ZENG Wu, MENG Shihan, YANG Ruixian,(School of Electronic and Electrical Enginering, Shanghai Jiao Tong University, Shanghai 200240, China)
出处 《现代建筑电气》 2018年第9期1-7,共7页 Modern Architecture Electric
基金 2017年(秋季)天煌科技支持教育部产学合作协同育人教学内容和课程体系改革项目(201702064025) 上海交通大学大学生创新计划项目(IPP15063)
关键词 能量管理策略 光伏发电 经济性 智能家居 储能 energy management strategy photovoltaie power economy smart home energy storage
  • 相关文献

参考文献7

二级参考文献80

  • 1董继征,王桓,何怡刚,陈洪云,王薇.加权马尔可夫链在负荷预测中的应用[J].继电器,2006,34(3):32-36. 被引量:9
  • 2牛东晓,张博,陈立荣,张彤彤.智能优化灰色模型在中期用电量预测中的应用[J].华东电力,2006,34(1):8-11. 被引量:13
  • 3中国通信标准化协会.移动M2M业务研究报告[R]. 被引量:1
  • 4Almonacid F ,Rus C , P6rez P J ,et al. Estimation of the energy of a PV generator using artificial neural network[J]. Renewable Energy,2009,34(12) :2 743-2 750. 被引量:1
  • 5Adnan Sozen, Erol Arcakhoglu, Mehmet Ozalp. Forecast- ing based on neural network approach of solar potential in Turkey[J]. Renewable Energy,2005,30(7): 1 075-1 090. 被引量:1
  • 6Adel Mellit, Alessandro Massi Pavan. A 24 h forecast of solar irradiance using artificial neural network: Applica- tion for performance prediction of a grid-connected PV plant at Trieste, Italy[J]. Solar Energy,2010,84(5)807-821. 被引量:1
  • 7林星春,曹家枞,陈洁.应用模糊技术的递归小波神经网络太阳日总辐射预测[J].东华大学学报(自然科学版),2007,33(5):573-578. 被引量:2
  • 8ARAI J, YAMAKI T, YAMAUCHI S, et al. Development of a high power lithium secondary battery for hybrid electric vehicles[J]. Jour-nal of Power Sources, 2005, 146:788-792. 被引量:1
  • 9Chuansheng Si, Development Research about the Power Battery Management System of Pure Electric Vehicle[C].XianNing: International Conference Consumer Electronics, Communications and Networks, 2011:276-279. 被引量:1
  • 10K ? tz tk, Ruch P W , and Cericola D. Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests. Journal of Power Sources,2010,195(3),923-928.0. 被引量:1

共引文献235

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部