期刊文献+

应用模糊技术的递归小波神经网络太阳日总辐射预测 被引量:2

Forecast of Daily Total Solar Irradiance Using Recurrent Wavelet BP Neural Networks Assisted by Fuzzy Technology
下载PDF
导出
摘要 考虑到人工神经网络在非线性函数逼近方面的特性和小波函数良好的时频域多分辨分析能力,建立了结合两者优点的递归小波BP网络(RWBPNN)模型,用以对地面太阳日总辐射进行准确预测.该模型将气象台的天气阴晴预报进行模糊化处理后输入神经网络,增加有用信息以改善模型的预测精度.同时还提出了批量平均权值法来训练网络,有效地改善了初始参数的选择问题.实例以及模型间的比较说明了本模型应用于太阳辐射预测具有更高精度和实际可行性. In consideration of the good performance of artificial neural networks in approximating nonlinear functions and the prominent ability of wavelet functions in time-frequency domain multi-resolution analyses, a recurrent wavelet BP neural network (RWBPNN) is established in combination of both advantages so as to forecast exactly the daily total solar irradiance. In order to further improve the forecast precision, the cloudiness from weather forecast is fuzzilized and then to be the inputs of the RWBPNN. A batch-average-weights method is used in network training for more effective selection of initial parameters. As an example a daily irradiance forecast for a month is completed using the sample data in Macao, and comparisons between irradiation models show that the RWBPNN model has higher precisions and is more feasible.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期573-578,632,共7页 Journal of Donghua University(Natural Science)
关键词 太阳日总辐射 预测 递归小波BP神经网络 模糊技术 误差 daily total solar irradiance forecast technology errors recurrent wavelet BP neural network (RWBPNN) fuzzy
  • 相关文献

参考文献12

  • 1Handbook of fundamentals. American society of heating, refrigeration, and air-conditioning engineers [ M]. New York : ASHRAE, Inc, 1985. 被引量:1
  • 2祝昌汉.我国散射辐射的计算方法及其分布[J].太阳能学报,1984,5(3):242-249. 被引量:9
  • 3COLLARES-PEREIRA M, RABL A. The Average Distribution of Solar Radiation Correlations between Diffuse and Hemispherical and between Daily and Hourly Insulation Values [J]. Solar Energy, 1979,22(2): 155-164. 被引量:1
  • 4MOHANDES M, REHMAN S, HALAWANI T O. Estimation of Global Solar Radiation using Aritifieial Neural Networks [J]. Renewable Energy, 1998,14: 179-184. 被引量:1
  • 5DORVLO A S S, JERVASE J A, Al-LAWATI A. Solar Radiation Assessment Using Artificial Neural Networks [J]. Applied Energy, 2002,71: 307-319. 被引量:1
  • 6HAMDY K A, FAIZ F A, TAREK S E. Estimation of Solar Radiation Components Incident on Helwan Site Using Neural Networks [J]. Solar Energy, 2005,79: 270- 279. 被引量:1
  • 7TYMVIOS F S, JACOVIDES C P, MICHAELIDES S C, et al. Comparative Study of Angstrom's and Artificial Neural Networks'Methodologies in Estimating Global Solar Radiation [J]. Solar Energy, 2005,78: 752- 762. 被引量:1
  • 8JACYRA S, AMAURI P O, MARIJA B, et al. Modeling Hourly Diffuse Solar-Radiation in the City of Sao Paulo Using a Neural-Network Technique [J ]. Applied Energy, 2004,79:201 - 214. 被引量:1
  • 9CAO Jia-cong, CAO Shuang-hua. Study of Forecasting Solar Irradianee Based on Neural Networks Combined with Wavelet Analysis [J]. Applied Thermal Engineering, 2005, 25: 161- 172. 被引量:1
  • 10员世芬,张金梅,田建艳.小波神经网络初始值的选择[J].电脑开发与应用,2005,18(2):37-38. 被引量:3

二级参考文献19

共引文献248

同被引文献13

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部