摘要
Two-dimensional carbide MXenes(Ti_3C_2T_x and V_2CT_x)were prepared by exfoliating MAX phases(Ti_3AlC_2 and V_2AlC)powders in the solution of sodium fluoride(NaF)and hydrochloric acid(HCl).The specific surface area(SSA)of as-prepared Ti_3C_2T_x was 21 m^2/g,and that of V_2CT_x was 9 m^2/g.After intercalation with dimethylsulfoxide,the SSA of Ti_3C_2T_x was increased to 66 m^2/g;that of V_2CT_x was increased to 19 m^2/g.Their adsorption properties on carbon dioxide(CO_2)were investigated under 0–4 MPa at room temperature(298 K).Intercalated Ti_3C_2T_x had the adsorption capacity of 5.79 mmol/g,which is close to the capacity of many common sorbents.The theoretical capacity of Ti_3C_2T_x with the SSA of 496 m^2/g was up to 44.2 mmol/g.Additionally,due to high pack density,MXenes had very high volume-uptake capacity.The capacity of intercalated Ti_3C_2T_(x )measured in this paper was 502 V·v^(–1).This value is already higher than volume capacity of most known sorbents.These results suggest that MXenes have some advantage features to be researched as novel CO_2 capture materials.
Two-dimensional carbide MXenes(Ti_3C_2T_x and V_2CT_x)were prepared by exfoliating MAX phases(Ti_3AlC_2 and V_2AlC)powders in the solution of sodium fluoride(NaF)and hydrochloric acid(HCl).The specific surface area(SSA)of as-prepared Ti_3C_2T_x was 21 m^2/g,and that of V_2CT_x was 9 m^2/g.After intercalation with dimethylsulfoxide,the SSA of Ti_3C_2T_x was increased to 66 m^2/g;that of V_2CT_x was increased to 19 m^2/g.Their adsorption properties on carbon dioxide(CO_2)were investigated under 0–4 MPa at room temperature(298 K).Intercalated Ti_3C_2T_x had the adsorption capacity of 5.79 mmol/g,which is close to the capacity of many common sorbents.The theoretical capacity of Ti_3C_2T_x with the SSA of 496 m^2/g was up to 44.2 mmol/g.Additionally,due to high pack density,MXenes had very high volume-uptake capacity.The capacity of intercalated Ti_3C_2T_(x )measured in this paper was 502 V·v^(–1).This value is already higher than volume capacity of most known sorbents.These results suggest that MXenes have some advantage features to be researched as novel CO_2 capture materials.
基金
supported by National Natural Science Foundation of China (Grant Nos. 51472075 and 51772077)
Program for Innovative Research Team (in Science and Technology)in the University of Henan Province (Grant No. 19IRTSTHN027)
Natural Science Foundation of Henan Province (Grant Nos. 182300410228 and 182300410275)