期刊文献+

基于大数据的武汉主城区公园绿地使用空间分布特征研究 被引量:8

Spatial Distribution Characteristics of the Green Space in the Main Urban Area of Wuhan Based on Large Data
下载PDF
导出
摘要 大数据时代来临,基于地理位置信息的大数据为人居环境学科的研究者提供了全新的视角。大量文献证明大数据在公园绿地的研究中具有重大的理论意义和实践价值。该文以武汉市主城区公园绿地为研究对象,利用百度地图热力图移动大数据进行绿地使用研究,分析了武汉市主城区公园绿地使用空间分布特征。研究结果表明:武汉市主城区内公园绿地高热区域主要集中在汉口中心城区和武珞路—珞瑜路沿线,绿地周边人口密度和综合通配套对使用率有极大影响;公园绿地单体面积对空间使用率有较强影响,单体面积较大的公园绿地内部空间更为功能多样化,普遍空间使用率偏低。在工作日、周末、假日一天内公园绿地使用面积变化规律基本相似,但在使用面积和热度聚集特征上表现出较大差异。 With the advent of the big data era, big data based on location information provide a new perspective for researchers in the field of human settlements. A large number of documents prove that big data has great theoretical and practical value in the study of green space. In this paper, the main city green space of Wuhan as the research object, using the Baidu heat map data for green space use research, we analyze the green space distribution characteristics. The results show that the high heat area of green space in the main urban area of Wuhan is mainly concentrated in the central urban area of Hankou and the both sides of Wuluo Road-Luoyu Road, the population density and comprehensive matching around the green space have a great impact on the utilization rate. The single green space area has a strong influence on the space use rate, and the space of the park green space with large area is more functional and diversified, and the space use rate is low. During the working day, weekend and holiday, the change rule of the use area of green space is basically similar, but it shows great difference in the use area and accumulation characteristics.
作者 刘育晖 章迟 侯云鹏 Liu Yuhui;Zhang Chi;Hou Yunpeng
出处 《华中建筑》 2018年第11期77-81,共5页 Huazhong Architecture
基金 湖北省自然科学基金资助项目(编号:2016CFB618)
关键词 大数据 热力图 公园绿地 使用空间 Big data Heat map Green space Use space
  • 相关文献

参考文献4

二级参考文献205

  • 1张鑫,阮金梅,盖春英,刘欣.北京中心城公交设施问题分析及对策建议[J].北京规划建设,2012(1):132-135. 被引量:5
  • 2Nature. Big Data [EB/OL]. [2012-10-02]. http,//www. nature, com/news/specials/bigdata/index, html. 被引量:1
  • 3Bryant R E, Katz R H, Lazowska E D. Big-Data computing : Creating revolutionary breakthroughs in commerce, science, and society [R]. [2012-10-02]. http:// www. cra. org/ccc/docs/init/Big_Data, pdf. 被引量:1
  • 4Science. Special online collection: Dealing with data [EB/OL]. [2012-10-02]. http://www, sciencemag, org/site/ special/data/, 2011. 被引量:1
  • 5Agrawal D, Bernstein P, Bertino E, et al. Challenges and opportunities with big data A community white paper developed by leading researchers across the United States [R/OL]. [2012-10-02]. http://cra, org/ccc/docs/init/bigdata whitepaper, pdf. 被引量:1
  • 6Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity [R/OL]. [ 2012-10-02 ]. http://www, mekinsey, corn/ Insights]MGI[Research/Teehnology _ and _ Innovation]Big _ data The next frontier for innovation. 被引量:1
  • 7World Economic Forum. Big data, big impact: New possibilities for international development [R/OL]. [2012- 10-02]. http://www3, weforum, org/docs/WEF TC MFS BigDataBigImpact_Briefing 2012. pdf. 被引量:1
  • 8Big Data Across the Federal Government [EB/OL]. [2012-10-02]. http://www, whitehouse, gov/sites/default/ files/microsites/ostp/big_data fact sheet_final_ 1. pdf. 被引量:1
  • 9UN Global Pulse. Big Data for Development:Challenges Opportunities [R/OL]. [ 2012-10-02 ]. http://www. unglobalpulse, org/proj ects/BigDataforDevelopment. 被引量:1
  • 10Times N Y. The age of big data fEB/OLd. [2012-10 -02]. http://www, nytimes, com/2012/02/12/sunday review/big- datas-impact in-the-world, html?pagewanted=all. 被引量:1

共引文献2474

同被引文献75

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部