期刊文献+

基于ARM手写数字识别系统 被引量:1

Handwritten Digit Recognition System Based on ARM
下载PDF
导出
摘要 本系统通过在嵌入式平台运行神经网络框架TensorFlow为基础来构建卷积神经网络,用手写数字数据集MNIST来训练构建好的神经网络。由于嵌入式平台的计算能力偏低,此外训练的过程会消耗大量的资源,则可以利用PC机资源训练已设计好的网络、参数,最后将训练好的参数加载到嵌入式平台。ARM处理器因为其优异的性能和极低的功耗以及丰富而强大的功能而在市场有着很高的占有率,具有接口方便,便于软件开发的特点。 Based on running the neural network framework Tensor Flow on an embedded platform, this system builds the convolutional neural network, which is trained by MNIST handwritten digital data. Due to the low capacity of the embedded platform, in addition, the process of training will consume large amounts of resources, the PC resource can be used to train the network and parameter that already designed, finally the trained parameters are loaded into the embedded platform. Arm processors have a high market share because of their excellent pefformance, extremely low power consumption and rich and powerful functions. It also has featmres of convenient interface and easy for softwmre development
作者 杨迪 黄盼盼 夏志勇 沈森 Yang Di, Huang Panpan,Xia Zhiyong, Shen Sen,(School of Inormation Engineering, Henan University of Science and Technology, Luoyang Henan 471003, China)
出处 《山西电子技术》 2018年第5期22-24,34,共4页 Shanxi Electronic Technology
基金 河南科技大学SRTP(2017075)资助课题
关键词 手写数字识别 卷积神经网络 ARM系统 handwritten numeral recognition convolution neural network ARM system
  • 相关文献

参考文献2

二级参考文献13

  • 1闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,21(7):4-10. 被引量:57
  • 2Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295. 被引量:1
  • 3Deshpande M,Karypis G.Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,2004,22(1):143-177. 被引量:1
  • 4Bell R M,Koren Y.Improved neighborhood-based collaborative filtering//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:7-14. 被引量:1
  • 5Koren Y.Factor in the Neighbors:Scalable and accurate collaborative filtering.ACM Transactions on Knowledge Discovery from Data,2009,4(1):1-24. 被引量:1
  • 6Kurucz M,Benczúr A A,Csalogny K.Methods for large scale SVD with missing values//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:31-38. 被引量:1
  • 7Paterek A.Improving regularized singular value decomposition for collaborative filtering//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:39-42. 被引量:1
  • 8Takcs G,Pilszy I,Németh B,Tikky D.Investigation of various matrix factorization methods for large recommender systems//Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition,2008:1-8. 被引量:1
  • 9Herlocker J,Konstan J,Riedl J.An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms.Information Retrieval,2002,5(4):287-310. 被引量:1
  • 10Herlocker J,Konstan J,Terveen L,Riedl J.Evaluating collaborative filtering recommender systems.ACM Transactions on Information Systems,2004,22(1):5-53. 被引量:1

共引文献130

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部