期刊文献+

基于BP神经网络的CRTS Ⅰ型板式无砟轨道CA充填层损伤识别 被引量:14

Damage Identification of CA Mortar Layer of CRTS Ⅰ Slab Track Based on BP Neural Network
下载PDF
导出
摘要 本文以CRTS Ⅰ型板式无砟轨道为研究对象,采用ABAQUS建立CA砂浆充填层完好及各脱空损伤工况下的板式无砟轨道有限元模型,通过模态分析发现,相比于频率,振型对CA砂浆充填层脱空损伤更敏感。以参数化处理的振型作为BP神经网络的输入对各损伤工况下板式轨道CA充填层损伤位置进行识别发现,在两种识别模式(单损伤和双损伤)下,本文提出的方法可以准确地识别出所有工况中CA充填层的损伤位置。本文提出的基于BP神经网络的CRTS I型板式无砟轨道CA充填层损伤位置识别的方法是可行的,有望为无砟轨道的安全诊断提供有效的技术支撑。 This research was focused on the CRTS I slab track. A finite element model was established using the software ABAQUS to analyze the modal parameters of the track structure under the intact and void damaged conditions of the CA mortar layer. The results showed that the mode shape was more sensitive to the damage compared with the frequeney. Taking the normalized mode shape as the input parameter of the BP neural network, the damage location of the CA mortar layer of the slab track under different damage conditions could be identified. The results indicated that all damage locations of the CA mortar layer were identified accurately by the proposed method under two identification patterns (single-damage identification and double-damage identification). The proposed methodology to identify the damage location of the CA mortar layer of the CRTS I slab track based on BP neural network is feasible and it is expected to provide effective technical support for the safety diagnosis of the slab track.
作者 胡琴 徐巍 高飞 朱宏平 HU Qin;XU Wei;GAO Fei;ZHU Hong-ping(School of Civil Engineering and Mechanics,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《土木工程与管理学报》 北大核心 2018年第5期87-93,共7页 Journal of Civil Engineering and Management
基金 国家重点研发计划(2016YFC0802002) 国家自然科学基金(51708242 51578260 51629801) 中央高校基本科研基金(2017KFYXJJ137)
关键词 损伤识别 模态分析 BP神经网络 CA砂浆 无砟轨道 damage identification modal analysis BP neural network CA mortar layer slab track
  • 相关文献

参考文献8

二级参考文献36

共引文献103

同被引文献175

引证文献14

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部