摘要
为了有效利用不锈钢生产过程产生的大量不锈钢酸洗污泥,本文采用Factsage热力学软件计算不锈钢酸洗污泥对铁矿粉烧结液相生成特性和CaO-SiO_2-Fe_2O_3-Al_2O_3-MgO-CaF_2体系液相分布的影响,并选用熔点熔速测定仪研究了不锈钢酸洗污泥对铁矿粉液相生成能力的影响规律,建立了液相流动性与不锈钢酸洗污泥液配加比例之间的数学模型,揭示了液相生成量的变化特征。结果表明,实验结果与FactSage计算值基本一致,不锈钢酸洗污泥配加比例小于10%能够有效改善铁矿粉液相生成特征温度,而对铁矿粉液相生成量的影响较小,液相流动性指数与不锈钢酸洗污泥配加比例关系为:y=18. 40305-0. 09139x-0. 02644x^2+9. 07734x^3。
In order to effectively utilize the pickling sludge produced in manufacture of stainless steel, in this paper, the thermal dynamics software Factsage was used to calculate the influence of the stainless steel pickling sludge on the liquid phase generation characteristics during iron ore fines sintering and the liquid phase distribution of CaO-SiO2-Fe2O3-Al2O3-MgO-CaF2 system. The mehing point and melting speed tester was selected to study the rules of influence of stainless steel pickling sludge on liquid phase generating capacity of iron ore fines, and the mathematical model between liquid phase fluidity and proportion of stainless steel pickling sludge was established, which expressed changing characteristics of liquid phase quantity. The results show that, the test results are basically consistent with FactSage calculation value. When the proportion of stainless steel pickling sludge is less than 10%, it can effectively improve the characteristic temperature of hquid phase generation of iron ore fines but has little effect on the liquid phase formation quantity. The formula can represent the relationship between the fluidity index of liquid phase and proportion of stainless steel pickling sludge, which is y = 18. 40305 -0. 09139x -0. 02644x^2 + 9. 07734x^3.
作者
李小明
王翀
邢相栋
施瑞盟
汪衍军
Li Xiaoming;Wang Chong;Xing Xiangdong;Shi Ruimeng;Wang Yanjun(School of Metallurgical Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,Shanxi)
出处
《烧结球团》
北大核心
2018年第5期12-19,共8页
Sintering and Pelletizing
基金
国家自然科学基金面上项目(51574189)
国家自然科学基金面上项目(51774224)
关键词
不锈钢酸洗污泥
铁矿粉
液相生成特征温度
液相流动性
stainless steel pickling sludge
iron ore fines
characteristic temperature of liquid phase formulation
liquid phase fluidity