期刊文献+

基于BP神经网络的水果气调包装机械故障诊断方法 被引量:9

Fault Diagnosis Method of Fruit MAP Machine Based on BP Neural Network
下载PDF
导出
摘要 研究了一种基于BP神经网络的水果气调包装机械故障诊断方法。以水果包装容器中5种气体作为神经网络的输入,建立了可对水果气调包装机械一氧化碳充入设备故障、二氧化碳充入设备故障、氧气充入设备故障、氮气设备充入设备故障、抽真空设备故障5种单故障及混合故障进行诊断的BP神经网络模型,并通过MATLAB实现了仿真验证。通过对监测数据进行测试,测试结果表明BP神经网络用于包装机械故障诊断所建立模型的各项性能指标均处于较优水平。 A fault diagnosis method for fruit MAP machinery based on BP neural network was researched. With 5 kinds of gas in the fruit packaging container as the input of neural network,the BP neural network model that can diagnose 5 kinds of single faults such as the faults of carbon monoxide filling equipment,carbon dioxide filling equipment,nitrogen filling equipment,oxygen filling equipment and vacuum pumping equipment and their combination of the fruit MAP machinery was established,and verified through MATLAB simulation. By testing the monitoring data,the test results show that the performance indexes of the fault diagnosis model established based on BP neural network and used for fault diagnosis of packaging machinery were all at better level.
作者 文周 林伟健 WEN Zhou;LIN Wei-Jian(Dongguan Polytechnic,Dongguan 523808,China;School of Mechanical,Xi'an University of Science and Technology,Xi'an 710054,China)
出处 《包装与食品机械》 CAS 北大核心 2018年第5期69-72,共4页 Packaging and Food Machinery
基金 东莞职业技术学院2017年政校行企合作开展科研与服务项目(政201725)
关键词 BP神经网络 包装机械 故障诊断 仿真 BP neural network packaging machinery fault diagnosis simulation
  • 相关文献

参考文献7

二级参考文献96

共引文献216

同被引文献78

引证文献9

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部