摘要
【目的/意义】基于专业性多源网络数据,构建同质性或异质性领域知识图谱。【方法/过程】基于场景性关键词相似度计算进行同质网络层次聚类,揭示症状的同质性网络层次以及治疗方案的同质性网络层次;基于2-mode共现矩阵进行异质网络聚类,兼顾症状及治疗方案的关联关系,通过设置不同阈值揭示其异质关联性网络层次。【结果/结论】基于聚类纯度及熵值评价指标,实验结果显示:就纯度评价指标而言,进行同质性网络知识图谱分析较为合理;就熵值指标而言,进行异质性网络知识图谱分析较为合理。
【Purpose/significance】Based on professional multi-source network data to construct homogeneous or heterogeneous networks domain knowledge graph.【Method/process】Hierarchical clustering of homogeneous networks based on similarity computation of scene keywords was conduct, the homogeneity network of symptom and treatment plan were revealed; Heterogeneous network clustering based on 2-mode co-occurrence matrix was condect, association between symptoms and treatment options was considered, setting different thresholds to reveal the hierarchy of heterogeneous networks.【Result/conclusion】Based on the clustering purity and entropy evaluation index, the experimental results show that: in terms of the purity evaluation index, the construction of homogeneous network knowledge map is more reasonable; in terms of entropy index, it is reasonable to build heterogeneous network knowledge graph.
作者
李保珍
苏菁
LI Bao-zhen1, SU Jing2(1.Government Audit Big Data Research Centre, Nanjing Audit University, Nanjing 211815, China; 2.School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212003, China)
出处
《情报科学》
CSSCI
北大核心
2018年第10期13-19,共7页
Information Science
基金
国家自然科学基金项目(71673122
71273121)
关键词
知识图谱
同质网络
异质网络
聚类
knowledge graph
homogeneous network
heterogeneous network
clustering