期刊文献+

基于视觉物体识别的抗差岭估计定位算法 被引量:2

Visual Objects Detection Based Robust Ridge Regression Indoor Localization Method
下载PDF
导出
摘要 基于视觉物体识别的室内定位算法是一种新型的室内定位解决方案,算法通过物体检测、位置匹配、定位方程解算等步骤确定用户位置。然而,受到单目相机视域较小和物体检测算法精度较低的影响,根据检测物体测距信息而构成的定位方程存在严重的病态性,极大降低了算法的定位成功率和定位精度。因此,该文提出一种抗差岭估计定位解算算法,通过引入岭参数将无偏估计变为有偏估计,实现均方误差最小约束条件下的最优位置估计,并利用迭代选权降低了质量较差的观测量对定位精度的影响。实验结果表明,与OLS (Ordinary Least Square), LM (Levenberg-Marquardt)和RR (Ridge Regression)算法相比,该文提出的抗差岭估计定位解算算法能够有效提高基于视觉物体识别的室内定位方法的成功率和精度。 The indoor vision positioning algorithm based on object detection is a novel indoor positioning solution, which determines the position of the user through the process of objects detection, position matching, location equation calculation, etc. However, limited by the field-of-view of monocular camera and objects detection accuracy, the localization equation, which is constructed according to the detected objects range information, is seriously ill conditioned. Therefore, this paper proposes a novel localization method based on an improved robust ridge regression estimation, which reduces the influence of the lower accurate observations by iterative weight selection. The experimental results show that compared with Ordinary Least Square (OLS), Levenberg-Marquardt (LM) and Ridge Regression (RR) algorithms, the proposed improved robust ridge regression estimation algorithm can effectively improve the positioning success rate and positioning accuracy of the object detection based indoor navigation method.
作者 徐昊玮 廉保旺 邹晓军 岳哲 吴鹏 XU Haowei, LIAN Baowang, ZOU Xiaojun, YUE Zhe, WU Peng(School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第10期2453-2460,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61473308 61771393)~~
关键词 室内定位 岭估计 深度学习 Indoor localization Ridge regression Deep learning
  • 相关文献

参考文献2

二级参考文献22

  • 1Maxwell A,Lal S.Technological innovations in managing challenges of supply chain management.Universal Journal of Industrial and Business Management,2013,1(2):62-69. 被引量:1
  • 2Zhao Y Y,Liu Y H,Lionel M.Ni.VIRE:Active RFID-based localization using virtual reference elimination.International Conference on Parallel Processing(ICPP 2007),Xi'an,2007. 被引量:1
  • 3Bouet M,Pujolle G.L-VIRT:Range-free 3-D localization of RFID tags based on topological constraints.Computer Communications,2009,32(13-14):1485-1494. 被引量:1
  • 4Samers S,Zahi S N.A standalone RFID indoor positioning system using passive tags.IEEE Transactions on Industrial Electronics,2011,58(5):1961-1970. 被引量:1
  • 5Park S,Hashimoto S.Autonomous mobile robot navigation using passive RFID in indoor envi-ronment.IEEE Transactions on Industrial Electronics,2009,56(7):2366-2373. 被引量:1
  • 6Sangdo P,HongchuI L.Self-recognition of vehicle position using UHF passive RFID tags.IEEE Transactions on Industrial Electronics,2013,60(1):226-234. 被引量:1
  • 7Brchan J L,Zhao Z L,Wu J Q.A real-time RFID localization experiment using propagation models.IEEE International Conference on RFID.Orlando,FL,USA,2012,141-148.. 被引量:1
  • 8Xiao Z,Ye S J,Zhong B,Sun C X.BP neural network with rough set for short term load forecasting.Expert Systems with Applications,2009,36(1):273-279. 被引量:1
  • 9Kuo R J,Chang J W.Intelligent RFID positioning system through immune-based feed-forward neural network.Journal of Intelligent Manufacturing,Published online:12 September 2013. 被引量:1
  • 10Hong B Wj Huang Y J,Chen C Y,Wu P C,Chen W C.Fuzzy neural network based RFID positioning and navigation method for mobile robots.Research Journal of Applied Sciences,Engineering and Technology,2013,6(7):1233-1239. 被引量:1

共引文献21

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部