期刊文献+

基于Faster R-CNN及数据增广的满文文档印章检测 被引量:3

Seal Detection on Manchu Document Based on Faster R-CNN and Data Augmentation
下载PDF
导出
摘要 针对传统方法过分依赖颜色等特征,导致对古籍文档复印件检测效果不佳的问题,基于深度学习技术建立了一种新的满文文档图像印章检测方法。通过图像变换和合成技术建立满文古籍文档图像数据增广算法解决训练数据不足的问题,在所构建的增广数据集上建立Faster R-CNN深度学习模型挖掘深层图像特征,实现满文文档图像印章检测方法。对采集的真实满文文档复印件图像进行实验,印章检测精度可以达到99. 6%,表明本文的方法可以有效的检测古籍文档复印件图像中的印章,对满文文档的研究有重要意义。 Aiming at the problem that the traditional method has excessive dependence on color and other features, which results in poor detection of ancient books, this paper establishes a new Manchu document image seal detection method based on deep learning technology. Firstly, the image data augmentation algorithm of Manchu ancient books is used to solve the problem of in- sufficient training data through image transformation and synthesis technology. Then, the Faster R- CNN deep learning model is built on the constructed augmented data set to mine the deep image features, and the final Manchu document image seal detection method is realized. Experiment on the copy of the real Manchu document is carried out, and the accuracy of seal detection can reach to 99.6%. It shows that the method in this paper can effectively detect the seal in the image of the ancient document, which is of gloat significance for the study of Manchu documents.
作者 卢海涛 吴磊 周建云 郑蕊蕊 贺建军 LU Hai-tao;WU Lei;ZHOU Jian-yun;ZHENG Rui-rui;HE Jian-jun(School of Information and Commmunication Engineering,Dalian Minzu University,Dalian Liaoning 116605,China)
出处 《大连民族大学学报》 2018年第5期455-459,共5页 Journal of Dalian Minzu University
基金 国家自然科学基金资助项目(61503058) 国家自然科学基金青年基金项目(61702081) 辽宁省自然科学基金项目(201602190) 辽宁省自然科学基金指导计划项目(201602205)
关键词 满文档案 印章检测 FASTER R-CNN 目标检测 数据增广 Manchu files seal detection Faster R - CNN target detection data augmentation
  • 相关文献

参考文献5

二级参考文献25

  • 1王新年,梁德群.基于极坐标和小波的印章配准方法[J].计算机工程与应用,2005,41(24):218-221. 被引量:2
  • 2尤玉虎,周孝宽.数字图像最佳插值算法研究[J].中国空间科学技术,2005,25(3):14-18. 被引量:40
  • 3李晗,窦爱萍,解争龙,张琰.基于多特征的支持向量机印鉴识别[J].航空计算技术,2006,36(4):32-34. 被引量:2
  • 4FAN T J,TSAI W H. Automatic Chinese seal identification [J].Computer Vision Graphics and Image Processing, 1984, 25(2):311-330. 被引量:1
  • 5CHENC M,TSAI W H. Automatic identification of Chineseseal imprint with arbitrary or partial shapes [J]. Computer Pro-cessing Chinese Oriental Languages,1986,22(6):216-233. 被引量:1
  • 6CHEN Y S. Automatic identification for a Chinese seal image[J]. Pattern Recognition,1996,29(11):1807-1820. 被引量:1
  • 7SORIA.FRISCH A. Color seal extraction from documents:ro.bustness through soft data fusion [J]. EURASIP Journal on Ap.plied Signal Processing,2005,13(8):2146-2152. 被引量:1
  • 8WANG C Y,CHEN Y B. Seal extraction based on clusteringand local thresholding techniques [J]. Advanced Materials Re.search,2014,926/930:3467-3470. 被引量:1
  • 9Sonka.图像处理分析与机器视觉[M].3版.艾海舟,译.北京:清华大学出版社,2011. 被引量:1
  • 10Ho A T S,Shen J,Chow A K K,et al. Robust digital image-in -image watermarking algorithm using the fast Hadamard trans- form[ C]//Proceedings of the international symposium on cir- cuit and system 2003. [ s. 1. ] :IEEE ,2003:826-829. 被引量:1

共引文献14

同被引文献88

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部