摘要
使用时域有限差分法(FDTD)研究了AlGaN纳米柱的光学性质。通过仿真分析了铝组分的变化对纳米柱内外光场强度的影响。结果表明,在固定纳米柱尺寸条件下,纳米柱内部场强随铝组分显著变化,最大相差一倍,外部场强同样强烈依赖于铝组分。研究分析了纳米柱直径和高度对内部电场强度的影响。结果表明,纳米柱的内部场强受直径的影响比受高度的影响更为显著,在450nm波长下,直径大于120nm的纳米柱才能形成柱内模式分布。此外,在AlGaN纳米柱结构基础上引入铝金属薄膜,研究了不同波长下铝薄膜厚度对纳米柱电场分布的影响。研究发现,随着铝薄膜厚度的增加,在280和380nm波长下,纳米柱内外电场强度逐渐降低,而在450nm波长下,纳米柱内外场强增强倍数先逐渐减小再缓慢增大。
The optical properties of A1GaN nanocolumns were studied using the finite-difference time-domain (FDTD) method. The influence of the change of aluminum composition on the strength of the light field inside and outside the nanocolumns was analyzed by simulation. The re-sults show that under the fixed nanocolumn size conditions, the field strength inside the nanoco- lumns significantly changes with the aluminum composition by a factor of up to twice, and the ex- ternal field strength also strongly depends on the aluminum composition. The influences of the diameter and height of the nanocolumns on the internal electric field strength were studied. The results show that the diameter significantly affects the internal strength of the nanocolumns over the height, and only the diameter of the nanocolumns more than 120 nm can form a mode distri- bution inside the nanocolumns at 450 nm wavelength. In addition, aluminum thin films were in- troduced on the basis of A1GaN nanocolumns. The influence of the thickness of aluminum thin film on the electric field distribution of the nanocolumns at different wavelengths was investiga- ted. It is found that with the increase of the thickness of the aluminum film, the enhancement of the electric field strength inside and outside the nanocolumns relative to the light source gradually de- creases at 280 nm and 380 nm wavelength, while the enhancement of the field strength inside and outside the nanocolumns first decreases gradually and then increases slowly at 450 nm wavelength.
作者
高鹏
方华杰
蒋府龙
刘梦涵
徐儒
周婧
张熬
陈鹏
刘斌
修向前
谢自立
韩平
施毅
张荣
郑有炓
Gao Peng;Fang Huajie;Jiang Fulong;Liu Menghan;Xu Ru;Zhou Jing;Zhang Ao;Chen Peng;Liu Bin;Xiu Xiangqian;Xie Zili;Han Ping;Shi Yi;Zhang Rong;Zheng Youliao(Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 China;Institute of Optoelectronics at Yangzhou , Nanjing University, Yangzhou 255009, China)
出处
《微纳电子技术》
北大核心
2018年第10期719-723,729,共6页
Micronanoelectronic Technology
基金
国家重点基础研究发展计划(973计划)资助项目(2016YFB0400100,2016YFB0400602)
国家自然科学基金资助项目(61674076,61422401,51461135002)
江苏省自然科学基金资助项目(BY2013077,BK20141320,BE2015111)
江苏省重点学科资助计划
江苏省六大人才高峰资助项目(XYDXX-081)
集成光电子学国家重点实验室开放课题(IOSKL2017KF03)
南京大学扬州光电研究院研发基金资助项目
国网山东省电力公司电力科学研究院研发基金资助项目