期刊文献+

基于群集智能优化算法的城市共享单车优化分布研究

Research on Optimal Distribution of Urban Shared Bicycles Based on Swarm Intelligent Optimization Algorithm
下载PDF
导出
摘要 针对城市共享单车优化分布问题,以昆明市ofo小黄车为例,对共享单车停放地区数量分配问题构建模型,为共享单车资源优化配置提供理论依据。采用细菌菌落优化算法,即一种基于群集智能优化算法的仿生随机优化算法,用于解决城市共享单车停放地区数量分布问题。该算法为解决共享单车数量分布问题提供了一种新途径。 Aiming at the problem of optimal distribution of shared bicycles in the city, taking Kunming's ofo small yellow car as an example, themodel of the number allocation of shared bicycle parking areas is constructed to provide a theoretical basis for the optimal allocation of shared bicycleresources. The bacterial colony optimization algorithm, a bionic stochastic optimization algorithm based on the cluster intelligent optimization algorithm,is used to solve the problem of the number distribution of urban shared bicycle parking areas. The algorithm provides a new way to solve the problemof the number of shared bicycles.
作者 戴丽 DAI Li(College of Mechanical and Manufacturing Engineering,Southwest Forestry University,Kunming Yunnan 65022)
出处 《数字技术与应用》 2018年第8期117-118,共2页 Digital Technology & Application
基金 西南林业大学科技创新基金项目(Z17022) 国家自然科学基金(31760182)
关键词 群集智能优化算法 细菌菌落优化算法 共享单车 分布研究 swarm intelligence optimization algorithm bacterial colony optimization algorithm shared bicycle distribution study
  • 相关文献

参考文献7

二级参考文献64

  • 1李威武,王慧,邹志君,钱积新.基于细菌群体趋药性的函数优化方法[J].电路与系统学报,2005,10(1):58-63. 被引量:92
  • 2张文,刘玉田.自适应粒子群优化算法及其在无功优化中的应用[J].电网技术,2006,30(8):19-24. 被引量:60
  • 3熊虎岗,程浩忠,李宏仲.基于免疫算法的多目标无功优化[J].中国电机工程学报,2006,26(11):102-108. 被引量:86
  • 4PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine, 2002, 22(3): 52 - 67. 被引量:1
  • 5MULLER S D, MARCHETTO J, AIRAQHI S, et al. Optimization based on bacterial chemotaxis[J]. IEEE Transactions on Evolutionary Computation, 2002, 60): 16 - 29. 被引量:1
  • 6ABRAHAM A, BISWAS A, DASQUPTA S, et al. Analysis of reproduction operator in bacterial foraging optimization algorithm[C] //Proceedings of 2008 IEEE Conference on Evolutionary Computa- tion. New York: IEEE, 2008:1476 - 1483. 被引量:1
  • 7KIM H D, ABRAHAM A, CHO H J. A hybrid genetic algorithm and bacterial foraging approach for global optimization[J]. Information Sciences, 2007, 17(18): 3918- 3937. 被引量:1
  • 8BISWAS A, DASQUPTA S, DAS S, et al. A synergy of differential evolution and bacterial foraging optimization for global optimization[J]. Neural Network World, 2007, 17(6): 607 - 626. 被引量:1
  • 9KIM H D, CHO H J. Adaptive tuning of PID controller for multivariable system using bacterial foraging based optimization[C]//Proceedings of 3rd International Atlantic Web Intelligence Conference on Advances in Web Intelligence. New York: IEEE, 2005:231 -235. 被引量:1
  • 10CHEN H C. Bacterial foraging based optimization design of fuzzy PID controllers[C] //Proceedings of 4th International Conference on Intelligent Computing. New York: IEEE, 2008:841 - 849. 被引量:1

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部