期刊文献+

机械臂抓取行为规划研究综述 被引量:6

Review of Robot Arm Grasping Behavior Planning
下载PDF
导出
摘要 随着机器人工作环境越来越复杂,通过对其示范性的教学,可以使机器人更快地适应所处的环境,更好地完成人类所给的任务。在机器人行为中,机械臂在机器人工作中是不可缺少的。近年来,对机械臂抓取行为的建模控制成为科研工作的一个热点。最前沿的方法多从行为获取和行为表征2个方面着手,在行为获取方面大致有2种方法,一种是真人示教法,另一种是虚拟平台示教法;行为表征方面多采用深度学习的方法。本文从数据获取的角度对近几年机械臂建模和控制的研究发展进行综述。 As the robot’s working environment becomes more and more complex,through exemplary teaching to them,we can make the robot adapt to its environment faster and better accomplish the missions that humans have given. In the robot’s behavior,the robot arm is indispensable in the robot’s work. In recent years,the modeling and control of robotic arm grabbing has become a hot topic in scientific research. The most cutting-edge methods start with behavior acquisition and behavioral representation. There are roughly two methods for behavior acquisition,one is the real-person teaching method,the other is the virtual platform teaching method,and most of the behavioral characterization uses deep learning method. In this paper,the method of data acquisition is used as an example to review the research and development of manipulator modeling and control in recent years.
作者 韩丽丽 王奇志 杨永刚 HAN Li-li;WANG Qi-zhi;YANG Yong-gang(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China)
出处 《计算机与现代化》 2018年第9期11-16,共6页 Computer and Modernization
关键词 机械臂 建模 控制 模仿 深度学习 真人示教 robot arm modeling control imitation deep learning real-person teaching
  • 相关文献

参考文献4

二级参考文献44

  • 1张利格,黄强,杨洁,时有,王志杰,JAFRI Ali Raza.仿人机器人复杂动态动作设计及相似性研究[J].自动化学报,2007,33(5):522-528. 被引量:28
  • 2Takano W, Yamane K, Nakamura Y. Capture database through symbolization, recognition and generation of motion patterns. In: Proceedings of IEEE International Conference on Robotics and Automation. Roma, Italy: IEEE, 2007. 3092-3097. 被引量:1
  • 3Kim S, Kim C H, Park J H. Human-like arm motion generation for humanoid robots using motion capture database. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006. 3486-3491. 被引量:1
  • 4Nakazawa A, Nakaoka S, Ikeuchi K. Matching and blending human motions using temporal scaleable dynamic programming. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Osaka, Japan: IEEE, 2004. 287-294. 被引量:1
  • 5Nakazawa A, Nakaoka S, Shiratori T, Ikeuchi K. Analysis and synthesis of human dance motions. In: Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. Washington D. C., USA: IEEE, 2003. 83-88. 被引量:1
  • 6Yamane K, Nakamura Y. Dynamics filter-concept and implementation of on-line motion generator for human figures. In: Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, USA: IEEE, 2000. 688-694. 被引量:1
  • 7Nakazawa A, Nakaoka S, Ikeuchi K, Yokoi K. Imitating human dance motions through motion structure analysis Intelligent robots and system. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerdland: IEEE, 2004. 2539-2544. 被引量:1
  • 8Pollard N S, Hodgins J K, Riley M J, Atkeson C C. Adapting human motion for the control of a humanoid robot. In: Proceedings of IEEE International Conference on Robotics and Automation. Brown, USA: IEEE, 2002. 1390-1397. 被引量:1
  • 9Nakaoka S, Nakazawa A, Yokoi K, Hirukawa H, Ikeuchi K. Generating whole body motions for a biped humanoid robot from captured human dance. In: Proceedings of IEEE International Conference on Robotics and Automation. Taipei, China: IEEE, 2003. 3905-3910. 被引量:1
  • 10Nakaoka S, Nakazawa A, Yokoi K, lkeuchi K. Leg motion primitives for a dancing humanoid robot. In: Proceedings of IEEE International Conference on Robotics and Automation. Tokyo, Japan: IEEE, 2004. 610-615. 被引量:1

共引文献38

同被引文献75

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部