期刊文献+

基于Dropout深度卷积神经网络的ST段波形分类算法 被引量:10

ST Segment Waveform Classification Algorithm Based on Dropout Deep Convolutional Neural Network
下载PDF
导出
摘要 心电信号的ST段波形变化是心肌损伤等心血管类疾病临床诊断的重要辅助手段之一。针对ST段波形分类以及深度卷积神经网络过拟合问题,提出一种基于概率随机舍弃神经元建立子网络的Dropout深度卷积神经网络,通过心电信号数据去噪、ST段候选段筛选、神经网络卷积与下采样运算过程,实现ST段波形样本训练与测试。仿真实验对比分析了算法的波形分类准确率、卷积核个数影响和Dropout对算法泛化能力影响,与专家手工标注、BP、RNN和DCNN等方法进行比较,实验结果表明Dropout DCNN能够有效提高卷积神经网络泛化能力,提升算法的可用性。 ECG data analysis is one of the important auxiliary means for clinical diagnosis of cardiovascular related diseases. ST segment waveform changes can assist in judging myocardial injury and other diseases. Aiming at the problem of ST segment of ECG data waveform classification and deep convolutional neural network over-fitting,this paper proposes a Dropout deep convolutional neural network through ECG signal denoising,ST segments screening and down sampling to realize the waveform sample training with the test of ST segment. Waveform classification accuracy,the effect of convolution kernel and Dropout effect on the generalization ability are analyzed by the comparison of simulation results with expert manual annotation,BP,RNN and DCNN. The experimental results show that Dropout DCNN compared to the full depth of convolutional neural network can improve the generalization ability of neural network and enhance the availability of the algorithm.
作者 任晓霞 REN Xiaoxia(School of Mathematics and Information Science, Zhangjiakou University, Zhangjiakou Hebei 075000, China)
出处 《传感技术学报》 CAS CSCD 北大核心 2018年第8期1217-1222,共6页 Chinese Journal of Sensors and Actuators
基金 江苏省政策引导类计划(产学研合作)-前瞻性联合研究项目(BY2016049-01)
关键词 心电信号数据 ST段波形分类 深度卷积神经网络 DROPOUT 泛化能力 ECG signal data ST segment waveform classification Deep convolutional neural network Dropout generalization ability
  • 相关文献

参考文献7

二级参考文献64

  • 1顾敏,顾翔,何胜虎,孙磊,张晶,孙加斌.比较远程心电监测与心电图、动态心电图在心律失常及心肌缺血中的诊断价值[J].江苏实用心电学杂志,2013,22(2):565-569. 被引量:30
  • 2轩运动,赵湛,方震,杜利东,耿道渠,史要红.基于无线体域网技术的老人健康监护系统的设计[J].计算机研究与发展,2011,48(S2):355-359. 被引量:35
  • 3何文雪,谢剑英,杨煜普.基于代价函数的盲分离在线白化算法[J].上海交通大学学报,2004,38(9):1593-1596. 被引量:1
  • 4董军,徐淼,詹聪明,鲁魏峰.心电图识别与分类:方法、问题和新途径[J].生物医学工程学杂志,2007,24(6):1224-1229. 被引量:6
  • 5Sun Yan,Chan Kap,Krishnan Shankar.Characteristic wave detection in ECG signal using morphological transform. BMC Cardiovascular Disorders . 2005 被引量:1
  • 6GEORGE K.ANDRIKOPOULOS,POLYCHRONIS E.DILAVERIS,DIMITRIS J.RICHTER,ELIAS J.GIALAFOS,ANDREAS G.SYNETOS,JOHN E.GIALAFOS.??Increased Variance of P Wave Duration on the Electrocardiogram Distinguishes Patients with Idiopathic Paroxysmal Atrial Fibrillation(J)Pacing and Clinical Electrophysiology . 2006 (7) 被引量:3
  • 7Polychronis E. Dilaveris,Elias J. Gialafos,Skevos K. Sideris,Artemis M. Theopistou,George K. Andrikopoulos,Michael Kyriakidis,John E. Gialafos,Pavlos K. Toutouzas.??Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation(J)American Heart Journal . 1998 (5) 被引量:2
  • 8Andrew D. Krahn,Jure Manfreda,Robert B. Tate,Francis A.L. Mathewson,T. Edward Cuddy.??The natural history of atrial fibrillation: Incidence, risk factors, and prognosis in the manitoba follow-up study(J)The American Journal of Medicine . 1995 (5) 被引量:3
  • 9Monzón S,Trigano T,Luengo D.et al.Sparse spectral analysis of atrial fibrillation electrograms. IEEE International Workshop on Machine Learning for Signal Processing . 2012 被引量:1
  • 10Paredes S,Rocha T,Carvalho P.et al.Atrial activity detection through a sparse decomposition technique. International Conference on Bio Medical Engineering and Informatics . 2008 被引量:1

共引文献99

同被引文献105

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部