期刊文献+

基于GM-RBF神经网络的股票价格预测分析 被引量:6

Prediction and Analysis of Stock Price Based on GM-RBF Neural Network
下载PDF
导出
摘要 股票价格通常受市场各种因素的影响,并且在价格波动上通常表现出非线性和不确定性。在解决股票价格预测问题时,由于单一预测方法自身的局限性,往往准确度较低。因此,为了获取更加准确的预测结果,有必要结合2种或者更多的预测方法,建立一种组合预测模型。因此,本文提出了基于GM-RBF神经网络的股票价格预测模型,实验结果表明,相对单一的预测模型,GM-RBF神经网络的股票价格预测模型能够更加精确地对股票价格进行预测,更加客观地反映股票价格变化的规律。 Stock price is usually influenced by various factors in the market,and usually shows nonlinearity and uncertainty in price fluctuation. When we solve the stock price prediction problem,the accuracy of the single prediction method is often low due to its limitations. Therefore,in order to obtain more accurate prediction results,it is necessary to combine two or more prediction methods to establish a combination forecasting model. In view of stock price forecasting,the stock price prediction model based on GM-RBF neural network is proposed. The experimental results show that the stock price prediction model of GM-RBF neural network can predict the stock price more accurately and reflect the law of stock price change more objectively.
作者 刘述忠 LIUShu-zhong(Business School,Hohai University,Nanjing 211100,China)
机构地区 河海大学商学院
出处 《计算机与现代化》 2018年第8期8-11,共4页 Computer and Modernization
关键词 股票价格 灰色算法 神经网络 预测模型 stock price grey algorithm neural network prediction model
  • 相关文献

参考文献17

二级参考文献172

共引文献292

同被引文献62

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部