期刊文献+

基于社会化标注的用户兴趣发现及个性化推荐研究 被引量:5

Research on User Interest Mining and Personalized Recommendation Based on Socialized Annotation
下载PDF
导出
摘要 基于标签的个性化推荐应用越来越普遍,但是标签带有的语义模糊、时序动态性等问题影响着个性化推荐质量,现有研究仅从数量和结构上考虑用户与标签的关系。基于社会化标注系统的个性化推荐首先对融合社会关系的标签进行潜在语义主题挖掘,然后构建多层、多维度用户兴趣模型,提出模型更新策略,最后实现个性化推荐。采集Cite Ulike站点数据进行实验分析,结果表明改进算法比传统算法更准确表达用户兴趣偏好,有效提高了个性化推荐准确率。 Tag-based personalized recommendation is becoming more and more popular,but the semantic ambiguity and temporal dynamics of the labels affect the quality of personalized recommendations,and the existing researches only consider the relationship between users and labels in terms of quantity and structure. Personalized recommendation based on social tagging system firstly mined potential semantic topics of the tags that fused social relationships,then built multi-level,multi-dimensional user interest models,and proposed a model update strategy,finally achieved personalized recommendations. Collecting Cite Ulike site data for experimental analysis,and the results showed that the improved algorithm expressed user interest preferences more accurately than traditional algorithms,and effectively improved the accuracy of personalized recommendation.
作者 王晓耘 赵菁 徐作宁 Wang Xiaoyun;Zhao Jing;Xu Zuoning(Department of Management Science & Engineering,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《现代情报》 CSSCI 2018年第7期67-73,80,共8页 Journal of Modern Information
关键词 社会化标注 用户兴趣 个性化推荐 socialized annotation user interest personalized recommendation
  • 相关文献

参考文献8

二级参考文献84

  • 1Ji A T, Yeon C, Kim H, et al. Collaborative Tagging in Recommender Systems [ C ]. In : Proceedings of the 20th Australian Joint Conference on Artificial Intelligence. Berlin : Springer - Verlag, 2007 : 377 - 386. 被引量:1
  • 2Gemmell J, Shepitsen A, Mobasher B, et al. Personalizing Navigation in Folksononaies Using Hierarchical Tag Clustering [ C ]. In : Proceedings of the lOth International Conference on Data Warehousing and Knowledge Discovering. Heidelberg: Spring - Verlag,2008 : 196 - 205. 被引量:1
  • 3Derenyi I, Palla G, Vicsek T. Clique Percolation in Random Networks [ J ]. Physical Review Letters,2005,94 ( 16 ) : 1 - 4. 被引量:1
  • 4Boragatti S P. Centrality and Network Flow [ J]. Social Networks, 2005,27(10) :55 -71. 被引量:1
  • 5WALT V. Folksonomy definition and Wikipedia[ EB/OL]. [2010 - 06- 03]. http:// www. vanderwal, net/random/entrysel, php? blog = 1750. 被引量:1
  • 6FIRAN C S, NEJDLW, PAIU R. The benefit of using tag-based profiles[ C]// LA-WEB'07: Proceedings of the 2007 Latin American Web Conference. Washington, DC: IEEE Computer Society, 2007: 32 -41. 被引量:1
  • 7MICHLMAYR E, CAYZER S. Learning user profiles from tagging data and leveraging them for personalized information access [ EB/OL]. [ 2010 - 05 - 01 ]. http://citeseerx, ist. psu. edu/viewdoc! download?doi = 10.1.1.72. 8101 &rep = repl &type = pdf. 被引量:1
  • 8RAMANATHAN K, GIRAUDI J, GUPTA A. Creating hierarchical user profiles using wikipedia [ EB/OL ]. [ 2010 -06 -22]. http: //www. hpl. hp. com/techreports/2008/HPL-2008-127, pdf. 被引量:1
  • 9GODOY D, AMANDI A. Hybrid content and tag-based profiles for recommendation in collaborative tagging systems[ C] // Proceedings of Latin AmericanWeb Conference. Washington, DC: IEEE Computer Society, 2008:58 -65. 被引量:1
  • 10SHEPITSEN A, GEMMELL J, MOBASHER B, et al. Personalized recommendation in social tagging systems using hierarchical clustering[ C] //Proceedings of the 2008 ACM Conference on Recommender Systems. New York: ACM, 2008:259 -266. 被引量:1

共引文献74

同被引文献49

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部