摘要
A magnetoresistive random-access memory(MRAM) device was irradiated by ^(60) Co c-rays and an electron beam.The synergistic effect of this on the MRAM was tested with an additional magnetic field during irradiation,from which the total ionizing dose(TID) and the synergistic damage mechanism of MRAM were analyzed.In addition,DC,AC,and functional parameters of the memory were tested under irradiation and annealing via a very large-scale integrated circuit test system.The radiation-sensitive parameters were obtained through analyzing the data.Because of the magnetic field applied on the MRAM while testing the synergistic effects,shallow trench isolation leakage and Frenkel–Poole emission due to synergistic effects were smaller than that of TID,and hence radiation damage of the synergistic effects was also lower.
A magnetoresistive random-access memory(MRAM) device was irradiated by -(60) Co c-rays and an electron beam.The synergistic effect of this on the MRAM was tested with an additional magnetic field during irradiation,from which the total ionizing dose(TID) and the synergistic damage mechanism of MRAM were analyzed.In addition,DC,AC,and functional parameters of the memory were tested under irradiation and annealing via a very large-scale integrated circuit test system.The radiation-sensitive parameters were obtained through analyzing the data.Because of the magnetic field applied on the MRAM while testing the synergistic effects,shallow trench isolation leakage and Frenkel–Poole emission due to synergistic effects were smaller than that of TID,and hence radiation damage of the synergistic effects was also lower.
基金
supported by the National Natural Science Foundation of China(No.11705276)
the West Light Foundation of the Chinese Academy of Sciences(No.CAS-LWC-2017-2)