期刊文献+

运动准备电位单次检测技术研究 被引量:4

Study on Single Trial Detection of Readiness Potentials
下载PDF
导出
摘要 针对自主运动起始时刻难以定位的难点,以受试者手臂自主运动前的EMG信号为研究对象,采用肌电激活触发点作为自主运动起始时刻,然后确定有效时间段;针对运动准备电位频率段难以确定的问题,采用小波包变换与功率谱分析相融合的方法确定有效频段.以信号的能量、均值和方差为特征,利用支持向量机(SVM)进行RP单次检测.实验结果表明:在自主运动过程单次检测RP中,15名受试者9组试验中最高检测率为77.5%~91.3%;每名受试者的9组平均检测率为68.2%~91.2%.研究结果有助于运动准备电位在异步BCI系统中的应用. Aiming at locating the starting time of autonomous motion,the EMG signal before the volunteers' autonomous motion was taken as the research object. The EMG activation trigger point was selected as the starting time of autonomous motion,and then the effective time segment was determined. The frequency section of the motion preparation potential was difficult to be determined,the effective frequency band was determined by the method of combining the wavelet packet transform and the power spectrum analysis. The energy,mean and variance of the extracted signal were characterized by the support vector machine( SVM) for single detection of RP. The experimental results showed that: in the process of self motion of single detection RP,15 subjects in 9 experiment the highest detection rate was 77. 5% - 91. 3%; each participant of the 9 groups the average detection rate was 68. 2% - 91. 2%. The results of this paper could be useful to the application of motion preparation potential in asynchronous BCI system.
作者 逯鹏 牛新 刘素杰 胡玉霞 胡航航 LU Peng, NIU Xin, LIU Sujie, HU Yuxia, HU Hanghang(School of electrical Engineering, Zhengzhou University, Zhengzhou 450001, Chin)
出处 《郑州大学学报(工学版)》 CAS 北大核心 2018年第4期70-74,共5页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(60841004 60971110 61172152) 郑州市科技攻关项目(112PPTGY219-8) 河南省青年骨干教师计划资助项目(2012GGJS-005)
关键词 脑电信号 肌电信号 运动准备电位 小波包变换 功率谱分析 支持向量机 EEG EMG movement readiness potentials WPD power spectrum analysis SVM
  • 相关文献

参考文献2

二级参考文献25

  • 1李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 2庄哲民,张阿妞,李芬兰.基于优化的LDA算法人脸识别研究[J].电子与信息学报,2007,29(9):2047-2049. 被引量:25
  • 3VINJE W E, GALLANT J L. Sparse coding and deeorrelation in primary visual cortex during natural vi- sion [J]. Science, 2000, 287(5456) : 1273 - 1276. 被引量:1
  • 4ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries [ J ]. IEEE Trans. Image Processing, 2006, 15 (12) : 3369 - 3745. 被引量:1
  • 5MAIRAL J, ELAD M, SAPIRO G. Sparse representa- tion for color image restoration [ J]. IEEE Trans. Im-age Processing, 2008, 17( 1 ) : 53 -69. 被引量:1
  • 6MAIRAL J, BACH F, PONCE J, et al. NonIocal sparse models for image restoration [ C ]//Proc. IC- CV, 2009 : 2272 - 2279. 被引量:1
  • 7WANG C, YAN S, ZHANG L, et at. Multi - Label Sparse coding for automatic image annotation [ C ]// Proc. IEEE Conf. CVPR, 2009:1643 - 1650. 被引量:1
  • 8WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation [J]. IEEE Trans. Pattern Anal. Mach. Intel., 2009, 31 (2): 210 - 227. 被引量:1
  • 9TURK M A, PENTLAND A P. Face recognition using eigenfaces[J]. Computer Vision and Pattern Recogni- tion, 1991,3(1) :71 -86. 被引量:1
  • 10FIGUEIREDO M, NOWAK R, WRIGHT S. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems [ J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (4) :586 -597. 被引量:1

共引文献20

同被引文献44

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部