期刊文献+

流行度划分结合平均偏好权重的协同过滤个性化推荐算法 被引量:7

Coordination Filtering Personalized Recommendation Algorithm Considering Average Preference Weight and Popularity Division
下载PDF
导出
摘要 提出了一种考虑平均偏好权重的协同过滤个性化推荐算法。该算法分为邻域计算、数据集划分、偏好预测3个阶段。在邻域计算阶段,采用基于欧氏距离的KNN来确定邻域;同时对数据集按照其本身特点设定的流行度阈值进行划分;在预测评分时,对已有的邻域按照流行度选取部分项目,基于项目集的偏好相似度求解用户的平均偏好权重,据此对用户进行先后两次预测,再求平均结果。在Movielens 100K数据集上将所提算法与典型的余弦推荐算法、person推荐算法、基于项目偏好的协调过滤算法和用户属性加权活跃近邻的协同过滤算法进行比较实验,结果表明新算法在MAE上表现的更优秀。 This paper presented a new recommendation algorithm which takes into account the average preference weight.The algorithm is divided into three stages:neighborhood computing,data set partitioning and preference prediction.In the neighborhood calculation,the KNN based on the Euclidean distance is used to determine the neighborhood.At the same time,the data set is divided into the data set and the non-popular data set according to the popularity threshold of the data set itself.When the score is predicted,the existing neighborhood selects part of the project according to the popularity degree,and predicts the user's average preference weight based on the preference similarity of the item set.The results show that on the Movielens 100 Kdata set,the new algorithm is superior to the typical cosine recommendation algorithm,the person recommendation algorithm,the collaborative filtering algorithm based on the project preference coordination filtering algorithm and the user attribute weighted active neighbor existing algorithms in MAE.
作者 何佶星 陈汶滨 牟斌皓 HE Ji -xing ,CHEN Wen- bin ,MOU Bin -hao(School of Computer Science, Southwest Petroleum University, Chengdu 610500, Chin)
出处 《计算机科学》 CSCD 北大核心 2018年第B06期493-496,共4页 Computer Science
关键词 协同过滤 KNN 个性化推荐算法 流行度划分 平均偏好权重 邻域计算 Coordination filtering KNN Personalized recommended algorithm Popularity division Average preference weight Neighborhood calculation
  • 相关文献

参考文献9

二级参考文献57

  • 1屈军,林旭.文本分类中特征提取方法的比较与分析[J].现代计算机,2007,13(4):10-13. 被引量:8
  • 2Zhang J,Chow C,Li Y. iGeoRec : a personalized and ef-ficient geographical location recommendation framework[J]. IEEE Transactions on Services Computing, 2014(99) :1-14. 被引量:1
  • 3Sattari M , Toroslu I H, Karagoz P, et al. Extended fea-ture combination model for recommendations in location-based mobile services [ J ]. Knowledge and InformationSystems, 2014,39(2) :279-313. 被引量:1
  • 4Xie J, Knijnenburg B P, Jin H. Location sharing privacypreference: analysis and personalized recommendation[C ] //Proceedings of the 19th International Conference onIntelligent User Interfaces. New York: ACM , 2014 : 189-198. 被引量:1
  • 5Li W, Yao M , Zhou X,et al. Recommendation of loca-tion-based services based on composite measures of trustdegree [ J ]. The Journal of Supercomputing, 2014,69(3) : 1154-1165. 被引量:1
  • 6Hu B, Ester M. Spatial topic modeling in online socialmedia for location recommendation [C] // Proceedings ofthe 7'h ACM Conference on Recommender Systems. NewYork: ACM, 2013: 25-32. 被引量:1
  • 7Wang H , Terrovitis M , Mamoulis N. Location recommen-dation in location-based social networks using user check-in data[C] //Proceedings of the 21st ACM SIGSPATIALInternational Conference on Advances in Geographic In-formation Systems. New York; ACM , 2013: 364-373. 被引量:1
  • 8Yuan Q, Cong G. Time-aware point-of-interest recom-mendation [C] // Proceedings of the 36th InternationalACM SIGIR Conference on Research and Development inInformation Retrieval. New York: ACM , 2013 : 363-372. 被引量:1
  • 9Noulas A, Scellato S, Lathia N, et al. Mining user mob-ility features for next place prediction in location-basedservices[C]//Data Mining(ICDM),2012 IEEE 12th In-ternational Conference on. Washington : IEEE, 2012 :1038-1043. 被引量:1
  • 10Ying J J C, Lu E H C. Urban point-of-interest recom-mendation by mining user check-in behaviors [C] // Pro-ceedings of the ACM SIGKDD International Workshop onUrban Computing. New York : ACM, 2012 : 63-70. 被引量:1

共引文献121

同被引文献53

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部