摘要
为满足精密测量领域精度高、可靠性强、实时性好的测量要求,提出一种基于Zemax仿真的激光追踪测量光学系统能量分析方法。根据激光追踪测量光学系统原理,建立激光追踪测量光学系统能量模型,利用Zemax仿真分析非理想光学元件对光学系统能量的影响。仿真结果表明,干涉分光镜的分光比为5…5且追踪分光镜的分光比为7…3时,四路干涉信号能量接近,条纹对比度达到0.89,干涉效果最好。偏振分光镜反射率在非理想条件下,四路干涉信号的条纹对比度会下降。偏振分光镜透射率在非理想条件下不影响四路干涉信号的条纹对比度。该研究对激光追踪测量系统的精度提升、可靠性评估、光学系统设计和光学元件选择具有指导意义。
In order to realize real-time measurement with high precision and high reliability,we propose a Zemax simulation based energy analysis method of optical system for laser tracking measurement. Based on the principle of optical system for laser tracking measurement,the energy model is established. The influence of non-ideal optical elements on the energy of optical system is analyzed by Zemax simulation. The simulation results show that the best interference pattern is obtained when the interference beam split ratio is 5 …5 and the tracking beam split ratio is 7 …3. In this situation,the interference signals from the four receivers have close energy,and the visibility of fringe pattern reaches 0. 89. The visibility of fringe pattern of the four received interference signals will degrade when the reflectivity of polarization beam splitters is under non-ideal conditions. The non-ideal transmittance of the polarization beam splitters does not affect the visibility of fringe pattern. The research is useful for the laser tracking measurement system,mainly in terms of precision improvement,reliability evaluation,optical system design,and optical element selection.
作者
陈洪芳
汤亮
孙衍强
石照耀
赵晓飞
Chen Hongfang1, Tang Liang1, Sun Yanqiang1, Shi Zhaoyao1, Zhao Xiaofei2(1.Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing University of Technology, Beijing 100124, China ;2.Center of Computer and Microelectronics Industry Development, MIIT (China Software Testing Center) Beijing 100048, China)
出处
《中国激光》
EI
CAS
CSCD
北大核心
2018年第7期177-184,共8页
Chinese Journal of Lasers
基金
国家重大科学仪器设备开发专项(2013YQ17053904)
北京市自然科学基金(3182005)
国家自然科学基金(51635001)
关键词
测量
激光追踪测量
Zemax仿真
能量分析
高精度测量
measurement
laser tracking measurement
Zemax simulation
energy analysis
high-precision measurement