期刊文献+

基于YouTube视频分享系统的信息挖掘 被引量:1

Mining the hiding information of YouTube sharing video system
下载PDF
导出
摘要 研究YouTube的服务器数据和网络流量数据,挖掘发现其中的隐藏信息,对设计高效的视频内容分发网络具有积极意义。通过比较服务器获得的数据和网络中获取的视频流量,应用统计建模方法,对用户行为、视频传输的静态和动态特征进行挖掘分析以研究YouTube的视频传输机制。结果表明,视频服务器上的静态信息和网络中获得的动态信息存在显著的相异性,这种差异性有助于研究人员在设计服务器端的算法和视频传输网络的缓存算法时采用不同的优化策略。 The server data and network traffic data of YouTube video were targeted to mine some valuable hiding information for designing effective video content distribution networks.The statistical modeling method was used to analyze user behavior patterns,static and dynamic properties by comparing the server data with network video traffic,in pursuit of exploring transmission mechanisms of YouTube.The results show that the static information derived from the video server data is strikingly different from the dynamic information of the network.This difference will help researchers to employ different optimized strategies in designing algorithms for video servers and caching algorithms for transmission networks.
作者 卢红波 钱亚冠 马骏 LU Hongbo;QIAN Yaguan;MA Jun(School of Sugon Big Data Science,Zhejiang University of Science and Technology,Hangzhou 310023,Zhejiang,China)
出处 《浙江科技学院学报》 CAS 2018年第3期230-234,250,共6页 Journal of Zhejiang University of Science and Technology
基金 浙江省自然科学基金项目(LY17F020011)
关键词 视频分享 社交网络 用户行为 传输机制 video sharing social networks user behaviors transmission mechanisms
  • 相关文献

参考文献2

二级参考文献18

  • 1VNI C. Cisco Visual Networking Index: Forecast and Methodology, 2013-2018. [EBIOL]. [2014- 9-20]. http://www.cisco.com/c/en/us/solutions/ collateral/service-provider/ip-ngn-ip-next-gen- eration-network/white Daoer ci 1-4813f]0.html. 被引量:1
  • 2YouTube Press [EB/OL]. [2014-9-20]. https:// www.youtu be.com/yt/press/statistics.html. 被引量:1
  • 3MAYER-SCHC)NBERGER V, and CUKIER K. Big data: A revolution that will transform how we live, work, and think [M]. Houghton Mifflin Har- court, 2013. 被引量:1
  • 4CHA M, KWAK H, RODRIGUEZ P, et al. I Tube, You Tube, Everybody Tubes: Analyzing the World's Largest User Generated Content Video System[C]// Proceedings of the 7th ACM SIG- COMM Conference on Internet Measurement. New York, NY, USA: ACM. 2007: 1-14. 被引量:1
  • 5CHENG X, DALE C, and LIU J. Statistics and social network of ouTube videos[C]//Proceed- ings of IEEE 16th International Workshop on Quality of Service. IEEE, 2008: 229-238. 被引量:1
  • 6GILL P, ARLITT M, LI Z, et al. YouTube Traffic Characterization: A View From the Edge[C]// Proceedings of the 7th ACM SlGCOMM Confer- ence on Internet Measurement. New York, NY, USA: ACM 2007:15-28. 被引量:1
  • 7MISLOVE A, MARCON M, GUMMADI K P, et al. Measurement and Analysis of Online Social Networks[C]//Proceedings of the 7th ACM SlG- COMM Conference on Internet Measurement. New York, NY. USA: ACM 2007: 29-42. 被引量:1
  • 8YouTube Elevates Most Popular Users to Part- ners [EB/OL]. [2014-9-20]. http://youtube-glob- al.blogspot.com/2007/O5/youtube-ele- vates-most-poDular-users-to.html. 被引量:1
  • 9STELTER B. Google Is Said to Weigh Invest- ing in Machinima, a Creator for YouTube [EB/OL]. [2014-9-20]. http://mediadecodenblogs. nytimes.com/2012/05/07/google-is-said-to- weigh-investing-in-machinima-a-creator-for- youtube. 被引量:1
  • 10HERNANDEZ M, HILDRUM K, JAIN P, et al. Con- structing consumer profiles from social media data[C]//Proceedings of 2013 IEEE Internation- al Conference on Big Data. IEEE, 2013: 710-716. 被引量:1

共引文献1

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部