期刊文献+

一种命名数据网络的视频全域协作缓存算法 被引量:1

A Video Global Domain Cooperative Caching Algorithm for Named Data Networking
下载PDF
导出
摘要 现有的命名数据网络缓存策略较少考虑节点间的缓存协作,易导致相邻节点缓存相同的内容,降低网络整体缓存效率。为此,构建一种全域协作缓存模型,针对模型求解难度较大的特点,提出一种基于灰狼优化(GWO)算法的预留协作缓存算法RCC。使用sigmoid函数将GWO算法连续位置更新函数二进制化,并编写位置检测与更正算法,以修正灰狼非法位置。仿真结果表明,相较于CVX优化器,该算法能以较小的时间和内存求得问题的近似最优解,且与传统缓存策略相比,其能取得较高的缓存命中率及较小的请求平均跳数。 In-network caching is one of the key aspects of Named Data Networking( NDN). The existing caching strategy of NDN takes insufficient consideration on caching cooperation among nodes,which can easily lead to the adjacent node to cache the same content and reduce the overall caching efficiency. To solve this problem,this paper builds a cooperative caching model employed in global domain,it is difficult to solve this model, so an algorithm of reservation cooperative cache based on Grey Wolf Optimization( GWO) algorithm is proposed which named RCC. The algorithm uses the sigmoid function to binarize the continuous position update function of the GWO algorithm and uses the position detection and correction algorithm to correct the wolf's illegal position. Simulation results show that, compared with the CVX optimizer,the RCC algorithm can obtain the approximate optimal solution of the problem with less time and memory, and compared with the traditional caching strategy,the RCC algorithm achieves higher caching hit rate and smaller average hops.
作者 胡亚萍 王子磊 HU Yaping;WANG Zilei(Department of Automation, University of Science and Technology of China, Hefei 230027, Chin)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第5期280-285,295,共7页 Computer Engineering
基金 国家自然科学基金(61233003) 中央高校科研业务费专项资金 中国科学院青年创新促进会项目
关键词 命名数据网络 视频 缓存策略 域内协作 缓存冗余 灰狼优化算法 Named Data Networking (NDN) video caching strategy inner domain cooperation caching redundancy Grey Wolf Optimization (GWO) algorithm
  • 相关文献

参考文献3

二级参考文献22

  • 1吴亮红,王耀南,周少武,袁小芳.采用非固定多段映射罚函数的非线性约束优化差分进化算法[J].系统工程理论与实践,2007,27(3):128-133. 被引量:27
  • 2QU B, SUGANTHAN P N, DAS S. A distance-based locally in- formed particle swarm model for multimodal optimization [ J]. IEEE Transactions on Evolutionary Computation, 2013, 17 (3) : 387 - 402. 被引量:1
  • 3MIRJALILI S, MIILIALILI S M, LEWIS A. Grey wolf optimization [ J]. Advances in Engineering Software, 2014, 69(7) : 46 - 61. 被引量:1
  • 4MADADI A, MOTLAGH M M. Optimal control of DC motor using grey wolf optimizer algorithm [ J]. Technical Journal of Engineering and Applied Science, 2014,4(4):373 -379. 被引量:1
  • 5EMARY E, ZAWBAA H M, GROSAN C, et al. Feature subset se- lection approach by gray-wolf optimization [ C]//Proceedings of the International Mre-European Conference on Industrial Advancement. Berlin: Springer, 2014:1 - 13. 被引量:1
  • 6MIRJALILI S. How effective is the grey wolf optimizer in training multilayer perceptrons [J]. Applied Intelligence, 2015,42(4) :608 -619. 被引量:1
  • 7EI-GAAFARY A A M, MOHAMED Y S, HEMEIDA A M, et al. Grey wolf optimization for multi input multi output system [ J]. Uni- versal Journal of Communications and Networks, 2015, 3(1) : 1 -6. 被引量:1
  • 8SONG H M, SULAIMAN M H, MOHAMED M R. An application of grey wolf optimizer for solving combined economic emission dispatch problems [ J]. International Review on Modelling and Simulations, 2014, 7(5) : 838 - 844. 被引量:1
  • 9PARSOPOULOS K E, VRAHATIS M N. Particle swarm optimiza- tion method for constrained optimization problems [ EB/OL]. [ 2015- 01- 03 ]. http://www, researchgate, net/publication/ 2527227_Particle_swarm_optimization_method for constrained_ optimization_problems. 被引量:1
  • 10HAUPT R, HAUPT S. Practical genetic algorithm [ M]. New York: John Wiley & Sons, 2004. 被引量:1

共引文献72

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部