摘要
本文给出了相空间BC((-∞,0];Rd)内具有无穷时滞的中立随机泛函微分方程解的两个存在性定理,它表示在漂移系数下定义的有界连续Rd函数族φ∈(-∞,0],||φ||=sup_(-∞<θ≤0)|φ(θ)|范围递增,左连续,满足线性生长条件。在此过程中,我们通过截尾法和惩罚法首先得到了一些利普希茨条件下的解的比较结果。
This paper is devoted to derive two existence theorems of solutions to a class of neutral stochastic functional differential equations(NSFDEs,in short)with infinite delay at phase space BC((-∞,0];Rd)which denotes the family of bounded continuousvalue functionsφdefined on(-∞,0]with norm||φ||=sup_(-∞θ≤0)|φ(θ)|under the drift coefficient is increasing,left continuous,satisfying linear growth condition.In doing so,we first obtain a comparison result of the solutions under some Lipschitz conditions on the coefficients by means of truncation and penalization method.
作者
张海涛
汪峻萍
ZHANG Hai-tao;WANG Jun-ping(Hefei Preschool Education College,Hefei 230011,China;School of Mathematics,Hefei University of Technology,Hefei 230009,China)
出处
《安徽师范大学学报(自然科学版)》
CAS
2018年第3期228-233,共6页
Journal of Anhui Normal University(Natural Science)
基金
安徽省高校自然科学研究重点项目(KJ2017A901)
关键词
中立型随机泛函微分方程
无穷时滞
惩罚法
Neutral stochastic functional differential equation
infinite delay
penalization method