期刊文献+

基于自动售检票数据的城市轨道交通通勤客流辨识 被引量:1

Commuters identification for urban rail transit using automatic fare collection data
下载PDF
导出
摘要 城市轨道交通具有明显的通勤客流主体特征,把握通勤客流出行规律对运营管理具有重要意义.本文以海量自动售检票数据潜在包含的时空关系为基础,从时间、空间、个体属性、出行规律四方面构建基于规则的出行目的辨识算法,重点针对通勤(上下班及上下学)客流进行辨识.以2014年北京市轨道交通售检票数据进行实证分析,结果显示:该方法能有效辨识上班、上学、下班回家、放学回家、其他回家和其他6类客流,其中上班占比26.77%,上学占0.44%,回家占44.49%(包含下班回家、放学回家及其他回家),其他占28.30%.结合2014年北京市公共交通出行调查结果,验证了辨识结果的准确性.该研究扩展了售检票数据应用范围,为精细化客流特征研究提供了一种低成本、高效的分析方法. The passenger flow of Urban Rail Transit (URT) mainly composes of commuters, and it is of great significance to understand the law of travel characteristics of commuters for the oper ation and management. Based on the potential spatial temporal relationship within Automatic Fare Collection (AFC) records, a rule based identification method is proposed to infer trip put pose for URT travelers, which is constructed from the view of time, space, personal properties and regular travel behaviors. An empirical transit network from Beijing in China is applied to veri fy the efficiency of the proposed method, results show that six types of trips (home work, work home, home school, school home, others home and other) can be efficiently identified, where the work trips cover 26.77 %, the school trips cover 0.44 % , home trips cover 44.49 % and other trips cover 28.30 %. Compared to the public transportation survey results in Beijing of 2014, theidentification results are verified to be reasonable and acceptable. This study improves the wllue of AFC data, and provides a new method for deeply analyzing travel demand.
作者 邹庆茹 赵鹏 姚向明 汪波 ZOU Qingru;ZHAO Peng;YAO Xiangming;WANG Bo(School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044,China;Beijing Municipal Commission of Transport,Beijing 100161,China)
出处 《北京交通大学学报》 CAS CSCD 北大核心 2018年第3期44-52,共9页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金(51478036 71701011) 中央高校基本科研业务费专项资金资助(2017RC032) 中国国家留学基金委(CSC)资助(201707090039)~~
关键词 城市轨道交通 通勤客流辨识 数据挖掘 规则辨识法 自动售检票数据 urban rail transit commuters identification data mining rule based method automatic fare collection data
  • 相关文献

参考文献5

二级参考文献43

共引文献40

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部